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Multiple Attractor Bifurcations: A Source of Unpredictability in Piecewise Smooth Systems
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There exists a variety of physically interesting situations described by continuous maps that are
nondifferentiable on some surface in phase space. Such systems exhibit novel types of bifurcations
in which multiple coexisting attractors can be created simultaneously. The striking feature of these
bifurcations is that in the presence ofarbitrarily small noise they lead to fundamentally unpredictable
behavior of orbits as a system parameter is varied slowly through its bifurcation value. This
unpredictability gradually disappears as the speed of variation of the system parameter through the
bifurcation is reduced to zero.

PACS numbers: 05.45.–a, 05.40.Ca
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In the literature dealing with bifurcation theory, diffe
entiable maps are commonly considered. On the o
hand, maps that are piecewise differentiable occur i
variety of physical situations. We will consider here tw
dimensional maps. By a piecewise differentiable tw
dimensional map we mean that the map is continu
and there is a curve (which we call theborder) separat-
ing the phase space into two regions, such that the m
is differentiable on both sides of the border, but not
it. In particular, in this Letter we shall be concerned w
the case where the map’s derivative changes discont
ously across the border. This circumstance leads to a
class of bifurcation phenomena calledborder-collision bi-
furcations [1,2], examples of which may be found in in
stances of grazing impact in mechanical oscillators [3–
in piecewise-linear electronic circuits [8,9], and in com
mercial power electronic devices [10,11].

In this Letter, we study the occurrence and prevale
of border-collision bifurcations in which multiple coexis
ing attractors are simultaneously created at the bifurcat
We call these bifurcationsmultiple attractor bifurcations.

Our principal point in this Letter is that multiple
attractor bifurcations display a striking new type
extreme sensitivity to noise. In particular, assume t
the noise dN is at all times limited by some sma
valuee . jdNj. Assume that before the bifurcation, th
orbit follows a particular attractor (to within the noise
and then imagine that, as the system orbit evolves,
bifurcation parameter is very slowly varied, eventua
passing through its value at the bifurcation. The quest
is: After the bifurcation, which attractor does the orb
follow? We argue thatno matter how small the noise
level e may be, this question may be fundamental
unanswerable [12].

There are many physical systems that demonstrate
above-mentioned phenomenon. As a simple represe
tive example, we consider the electronic circuit with
analog switch [13],S, controlled by a comparator [14]
O, as depicted in Fig. 1(a). Letq denote the electric
charge on the capacitorC, and let i denote the curren
flowing through the inductorL and the resistorR. For
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small values of the current,i, the voltage drop,iR, across
the resistorR is smaller than the reference voltage,yref.
Consequently, the comparator,O, keeps the switch,S,
open (off). However, when the current increases so t
i . icrit � yref�R, the comparator output changes sta
thereby closing the switch,S. Ideally, the transition of
the switch from an open state to a closed state (and v
versa) should be sharp and instantaneous. In reality, h
ever, the situation is somewhat compromised by a vari
of factors including finite gain and slew rate in the com
parator op-amp, and finite rise and fall times of the switc
This causes a slightblurring of the i � icrit boundary.
Fortunately, the precision and speed afforded by pres
day components restrict this boundary broadening to l
els insignificant compared to the typical value ofi in the
circuit, thereby justifying the sharp boundary model. T
entire system is driven by an externally applied volta
signal y�t� which is a square wave of amplitudeyamp
with a constant biasybias. The circuit model can be de
scribed by the following nondimensionalized equations

dQ�dT �

Ω
I �I # 1� ,
I 2 �Q 1 Qbias��r �I . 1� , (1)

dI�dT �

Ω
2V2Q 2 GI 1 F �0 , T # 1�2� ,
2V2Q 2 GI 2 F �1�2 , T # 1� ,

(2)

where I � i�icrit, Q � � fq�icrit� 2 Qbias, and the
time T is normalized to the period of the squar

FIG. 1. (a) The border collision circuit. (b)i # icrit. (c)
i . icrit.
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wave drive, T � ft, where f is the drive fre-
quency. The parameters in (1) and (2) are r � fCRC ,
F � yamp� fLicrit�21, V21 � f

p
LC, G � R�� fL�, and

Qbias � ybiasfC�icrit. Figures 2(a) and 2(b) show bifur-
cation diagrams for this system for the two-dimensional
time-1 map of this system (for parameters, see the figure
caption). The interesting fact is that when (as was done to
get Fig. 2) one creates bifurcation diagrams by following
the attractor as the bifurcation parameter is varied, upon
addition of even extremely small noise (the level of which
can be judged from the small thickening of the lines in
the bifurcation diagram), we find that after the bifurcation
the orbit can go to different attractors: either a period-3
attractor [Fig. 2(a)] or a chaotic attractor [Fig. 2(b)].

Before proceeding further, we introduce a canonical
form [15] for border-collision bifurcations given in [1],
which allows us to treat piecewise-differentiable systems
in a general system-independent manner. Let Gm be a
one-parameter family of piecewise smooth maps from
the two-dimensional phase space to itself, depending
smoothly on the parameter m. Let Em denote a fixed
point (period one orbit) of Gm defined on m0 2 a ,

m , m0 1 a and depending continuously on m, for some
a . 0 (the analysis may be easily extended to include
points on a period-p orbit by choosing the map to be the
pth iterate of Gm). As the parameter m is increased from
m0 2 a, we suppose that the fixed point Em collides with
the border at m � m0. We could also allow the border
to depend on m, but coordinates can always be chosen so
that it remains fixed. For m near m0 the attractors are
located near Em0 , and one can expand the map to first

FIG. 2. (a),(b) Bifurcation diagrams for the two-dimensional
time-1 map of the circuit depicted in Fig. 1 with Qbias � 21.0,
r � 0.107 42, V � 1.0642, and G � 1.2040. In creating the
bifurcation diagrams (a) and (b) small noise was inserted lead-
ing to two different realizations. (c),(d) Bifurcation diagrams
for the equivalent canonical form, Eq. (3), near criticality with
t, � 0.7, t. � 22.0, and d � 0.3. In creating (c) and (d),
small noise was inserted leading to two different realizations.
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order for �x, y� near Em0 and �m 2 m0� small. Nusse and
Yorke [1] show that after suitable changes of coordinates
and rescaling of the parameter, the resulting continuous,
piecewise-linear map can be cast in the form

Ĝm�xn, yn� �

µ
xn11
yn11

∂
�

∑
t�x� 1

2d�x� 0

∏ µ
xn

yn

∂
1

µ
m

0

∂
,

(3)

where t�x� and d�x� are piecewise constant with a
discontinuity at x � 0, that is �t�x�, d�x�� � �t,, d,�
for x # 0 and �t�x�, d�x�� � �t., d.� for x . 0, where
t,, d,, t., and d. are constants. In Eq. (3) the border
has been transformed to the y axis, m0 � 0, and Em0 �
�0, 0�. We refer to (3) as the canonical form of the
original map Gm. By the piecewise linearity of (3)
in �x, y� and its linearity in m, it is invariant under
�x, y, m� ! �lx, ly, lm�. Thus, as m is reduced towards
zero, any attractor of the system and its basin of attraction
must contract linearly with m, with the attractor collapsing
to the point �x, y� � �0, 0� [cf. Figs. 2(c) and 2(d) in
which both the period-3 attractor and the chaotic attractor
collapse onto the point �0, 0�]. Thus it appears that, no
matter how small the noise level e may be, there always
exists a finite, positive m interval where the attractors
are close enough for the noise to induce interattractor
hopping, thereby rendering prediction of the final attractor
impossible [16,17].

The canonical form (3) depends on four parameters
t,, d,, t., and d. (and the bifurcation parameter m).
To find them from the original map Gm, we evaluate its
Jacobian matrix of partial derivatives for m � m0 on both
sides of the border, infinitesimally close to Em0 . The pa-
rameters t,, t. and d,, d. are then the trace and the
determinant of the Jacobian matrix on the two sides of
the border. We emphasize that this approach using the
canonical form may be applied to any generic, piecewise
smooth, two-dimensional system. As an example, we
evaluate the canonical form for the system, Eqs. (1) and
(2), with parameters corresponding to those of Figs. 2(a)
and 2(b). Figures 2(c) and 2(d) show bifurcation dia-
grams obtained from this canonical form (map Ĝm) along
with some very small additive noise. Note that this figure
reproduces the particular bifurcation phenomenon: there
is a border-collision bifurcation of the fixed point attractor
(m , 0) to two attractors (m . 0), one a period-3 attrac-
tor and the other a chaotic attractor. This is an example
of a multiple attractor bifurcation.

In our example, Eqs. (1) and (2), the Jacobian deter-
minant is constant, d, � d. � d . 0, and for simplic-
ity we henceforth limit our considerations to this case.
Thus, for fixed d, the type of border-collision bifurcations
that occurs depends on the two parameters t, and t..
We explore this parameter space to assess the prevalence
of multiple attractor bifurcations. Figure 3 shows the
(t,, t.) plane for 0.5 , t, , 0.9, 22.2 , t. , 21.8,
d � 0.3, and m � 1. Two specific initial conditions,
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FIG. 3. Two-dimensional period plot in parameter space for
the canonical form, Eq. (3), with 0.5 , t, , 0.9, 22.2 ,
t. , 21.8, d � 0.3, m � 1, and initial conditions �x0, y0� �
�7.0, 2.0� and �x0, y0� � �1.2, 0.0�.

�x0, y0� � �7.0, 2.0� and �x0, y0� � �1.2, 0.0�, were chosen
for our simulations at every (t,, t.) grid point. The re-
sults show four distinct regions—two where both the ini-
tial conditions lead to a period-3 attractor, another where
both the initial conditions lead to a chaotic attractor, and
still another where one of the initial conditions leads to a
period-3 attractor while the other leads to a chaotic attrac-
tor. Clearly, the fourth region represents parameter values
where at least two attractors coexist after bifurcation, thus
making multiple attractor bifurcations possible.

It has been shown so far how a novel form of
unpredictability might arise in piecewise smooth maps.
However, this new uncertainty gradually gives way to
certainty as the bifurcation speed (the rate at which the
bifurcation parameter is varied in time) is reduced to
arbitrarily low values. In order to understand this consider
the case where there are two attractors A and B, and m

and the upper bound e on the noise level are held fixed.
For very small m, the (noiseless) attractors are closer
together than the noise level e. For sufficiently large m

the attractors are so far apart that the noise cannot kick an
orbit on one of the attractors out of its basin, and the orbit
stays near the same attractor, A or B, forever. In general,
however, there will be intermediate m values mA and mB

such that hopping from A to B becomes impossible when
m . mA, and hopping from B to A becomes impossible
when m . mB. Generically (in the absence of special
symmetries) mA fi mB, and we assume mB . mA; e.g.,
attractor B might be closer to the basin boundary than
is attractor A. Therefore, if the bifurcation parameter
were to be varied infinitely slowly, during the time when
mB . m . mA, the system would certainly end up in
A and it would remain there. Thus, in the quasistatic
limit, there is no unpredictability as to which attractor the
system ends up in.
Thus unpredictability occurs at nonzero bifurcation
speed and we now ask whether we can predict anything
about the relative probabilities of ending up on the
different attractors given the bifurcation speed.

For simplicity, let us consider the situation with just
two postbifurcation attractors, A and B, as described in a
previous paragraph. Let y denote the bifurcation speed,
while a�m� and b�m� represent the probabilities of the
system being in attractors A and B, respectively. Then
for small y we have

a 1 b � 1 , (4)

db�dt � 2lBAb 1 lABa , (5)

where lAB�m� and lBA�m� are the noise induced transition
probabilities from A to B and B to A, respectively. Since
lAB�m� � 0 for m . mA, we immediately have

b�m� � b�mA�e
2 1

y

RmB

mA
lBA�m0� dm0

, (6)
for m . mB, where we assume that we begin at some
m , mA. It should be pointed out that as y ! 0,
b�mA� ! 0 as well, but only as yb for lAB�m ! m

2
A � �

�mA 2 m�b . Therefore, to leading order, b�m . mB�, the
probability of the system ending up on the nonquasistatic
attractor satisfies ln�b�m . mB�� � 21�y.

Two sets of simulations were conducted for Eq. (3)
at the parameter values corresponding to the electronic
circuit described before. The system was subjected to
additive noise with bounded amplitude. In one case, the
noise vector distribution had the form of a uniformly
filled square centered at the origin. In the other case,
the distribution was a uniformly filled circular disk
also centered at the origin. In both cases, when the
speed of variation of the bifurcation parameter was
sufficiently small, the system tended to relax to the period-
3 attractor. Figure 4 confirms that, at intermediate speeds,
the probability of not going to the period-3 attractor
indeed conforms to Eq. (6).

In conclusion, in this paper we have discussed a novel
form of uncertainty that can arise in piecewise smooth
systems. We have also pointed out how that uncertainty
slowly fades into certainty as the speed of bifurcation is
reduced to zero.

FIG. 4. Probability b�m . m2�, plotted logarithmically, as a
function of 1�y, based on 1 000 000 experiments for every
value of 1�y. Solid lines and plus symbols represent square
noise, while dashed lines and asterisks represent circular noise.
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