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Dynamical Symmetry and Higher-Order Interactions
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It is shown that the concept of dynamical symmetry is enriched by increasing the order of the
interactions between the constituent particles of a given many-body system. The idea is illustrated with
an analysis of the interacting boson model of nuclei which shows that higher-order interactions can give
rise to a rotational spectrum with O(6) dynamical symmetry.

PACS numbers: 21.60.Fw, 03.65.Fd, 21.60.Ev
A powerful method for finding eigensolutions of a
quantal many-body system is based on the concepts of
spectrum generating algebra and dynamical symmetry.
One assumes that the Hamiltonian of the system can be
written in terms of the generators of a Lie algebra, the
spectrum generating algebra Gsg. The latter does not, in
general, define an invariant symmetry in the sense that
the Hamiltonian does not commute with all generators
of Gsg. The invariant symmetry of the Hamiltonian
(assuming it possesses one) is associated with an algebra
Ginv which is a subalgebra of Gsg. The enumeration of all
solvable Hamiltonians amounts to finding all subalgebra
embeddings from Gsg to Ginv and corresponds to the
algebraic reductions

Gsg .
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where �1�, . . . , �n� enumerates all possible reductions. If
the Hamiltonian can be written in terms of invariant (or
Casimir) operators of a single reduction chain �k� in
(1), its eigensolutions are known analytically. In that
case the algebras G

�k�
i , i � 1, 2, . . . define the dynamical

symmetries of the Hamiltonian: its eigenstates can be
characterized by the labels associated with these algebras
but, unlike an invariant symmetry, no degeneracy results.

This generic procedure is now widely used in many
fields of physics with well-known examples in nuclear [1],
molecular [2], and hadronic [3] physics while applications
in other areas are actively researched (see [4] for a recent
example in polymer physics). The procedure can perhaps
best be illustrated with the example of the interacting boson
model (IBM) which provides a description of collective ex-
citations of an atomic nucleus in terms of s and d bosons
[1,5]. The s and d bosons can be thought of as corre-
lated (Cooper) pairs of valence nucleons coupled to angu-
lar momentum l � 0 and l � 2. The spectrum generating
algebra of the model is U(6), generated by unitary trans-
formations among the six components sy and dy

m, since
the Hamiltonian as well as other operators are expressed
in terms of its generators. The invariant symmetry of the
problem is defined by the angular momentum algebra O(3)
since any Hamiltonian describing the nucleus must be ro-
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tationally invariant. All solvable limits of this model then
correspond to algebraic reductions from U(6) to O(3). As
shown by Arima and Iachello [6], there are three such lim-
its, specified by the reductions

U�6� .
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with spectra that are frequently observed in nuclei.
In recent years the theory of dynamical symmetries

has witnessed two further developments. First, it was
shown that, although (1) enumerates all completely solv-
able Hamiltonians, it is possible to construct additional
interactions that preserve solvability for part of the eigen-
states. Such situations are referred to as partial dynamical
symmetries [7]. For example, in the SU(3) limit of the
IBM one can construct an interaction that leaves invariant
the ground band, the g band, the double-g K � 4 band,
etc., but mixes all other states [8]. In a second devel-
opment, it was pointed out by Kusnezov [9] and, indepen-
dently, by Shirokov et al. [10] that the embeddings (1) are
specified only up to an inner automorphism. The applica-
tion of such inner automorphism on a given Hamiltonian
leads to one with different interaction parameters but with
the same energy spectrum. Applied to a solvable Hamil-
tonian, the resulting one is again solvable with the same
labeling but different wave functions for its eigenstates.
This observation is important for a proper understanding
of the chaoticity character since it reveals the existence
of hidden symmetries in certain regions of the parameter
space [11].

In this Letter, it is pointed out that yet a further general-
ization of the idea of dynamical symmetry is possible. It
represents a departure from any of the classifications in (1)
but does so while preserving some of the dynamical sym-
metries G

�k�
i . An algorithm for constructing interactions

with those properties is given, and examples show the ex-
istence of such interactions to be correlated with their or-
der. The discussion will be focused on the nuclear physics
example (2), but the idea may have implications in other
areas of physics.

Let G1 . G2 . G3 be a set of nested algebras which
may occur anywhere in the reductions (1). The analy-
sis that follows is independent of the exact location in
© 1999 The American Physical Society 4269
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(1) of these nested algebras. It may be, for instance, that
G1 coincides with Gsg, or that G3 coincides with Ginv ,
or that the entire set occurs somewhere in between Gsg
and Ginv . Unless another algebra G0

2 fi G2 exists such
that G1 . G0

2 . G3, it would appear that any Hamiltonian
which has G1 and G3 as (dynamical) symmetries necessar-
ily also has G2 as a dynamical symmetry. This, in fact, is
not the case, as can be shown as follows. Let �ĝi� be the set
of generators that belong to G1 but not to G2. Any com-
bination of ĝi cannot admix representations of G1 (since
they are generators of G1) and hence a Hamiltonian written
in terms of ĝi has the labels G1 associated with G1 as good
quantum numbers. It suffices now to construct combina-
tions of ĝi that are scalar in G3 [12] (and hence conserve
the associated labels G3) but admix representations G2 of
G2. The resulting Hamiltonian will then have the property
of mixing the G2 labels while having G1 and G3 as good
quantum numbers. It does not correspond to any of the
limits in (1) yet it displays the (dynamical) symmetries G1
(and those containing G1) and G3 (and those contained in
G3). Note that the resulting Hamiltonian is in general not
analytically solvable. Nevertheless, the occurrence of the
quantum numbers G1 and G3 carries with it the existence
of selection rules, hallmark of dynamical symmetries.

The procedure for constructing Hamiltonians with the
above properties involves the identification of the tensor
character under G2 and G3 of the operators ĝi , and an
analysis of tensor multiplication in G2 and G3 and of
G2 . G3 reduction rules. While these are evidently case
dependent, they result from straightforward application of
group theory.

These general notions can be exemplified by considering
all nested algebras G1 . G2 . G3 of the reductions (2).
Take first the sequence O�6� . O�5� . O�3� which occurs
in the O(6) limit of the IBM. Eigenstates in this limit
are j�N�stLML� where the labels are associated with
U(6), O(6), O(5), O(3), and O(2), respectively [1]. It is
usually assumed that the goodness of the quantum number
s implies that of t. The above analysis shows this not
to be the case and, moreover, provides a procedure for
generating s-conserving, t-violating interactions. The
generators ĝi contained in O(6) but not in O(5), are the
five components of the quadrupole operator Q̂m 	 �sy 3
d̃ 1 dy 3 s̃��2�

m . Combinations of ĝi in this case are
multiplications of Q̂m. The tensor character of Q̂m under
O(5) is �t1, t2� � �1, 0� and under O(3) evidently L �
2. The quadratic interaction �Q̂ 3 Q̂��0� corresponds to
the O(5) multiplication �1, 0� 3 �1, 0� � �2, 0� 1 �1, 1� 1

�0, 0�. Since the O(5) representations (2,0), (1,1), and
(0,0) contain the angular momenta L � 2, 4, L � 1, 3,
and L � 0, respectively, it follows that the O(3)-scalar
�Q̂ 3 Q̂��0� must also be scalar in O(5). Thus quadratic
O(3)-scalar interactions that conserve O(6) necessarily
also conserve O(5). This is usually taken for granted in
the IBM but is seen here to be related to the order of
the interaction. In the next, cubic order, the interaction
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�Q̂ 3 Q̂ 3 Q̂��0� corresponds to �1, 0� 3 �1, 0� 3 �1, 0�;
O(5) multiplication and O�5� . O�3� reduction rules show
that there is only one O(3) scalar and it has O(5) character
(3,0). Consequently, �Q̂ 3 Q̂ 3 Q̂��0� is an example of a
s-conserving, t-violating interaction; it mixes �t, 0� with
�t 6 1, 0� and �t 6 3, 0�.

The analysis of Q̂ combinations can be extended to
higher orders. For example, it can be shown that the quar-
tic interactions �Q̂ 3 Q̂ 3 Q̂ 3 Q̂��0� (there are several of
them depending on the intermediate coupling) have (0,0) or
(2,2) tensor character in O(5). Neither tensor can mix sym-
metric O(5) representations and hence such fourth-order
interactions do not break O(5) dynamical symmetry.

The spectra generated by the �Q̂ 3 Q̂��0� and �Q̂ 3

Q̂ 3 Q̂��0� interactions are different as is illustrated in
Fig. 1. The top part shows the spectrum of �Q̂ 3 Q̂��0�;
it corresponds to that of a g-soft nucleus (i.e., soft with
respect to triaxial deformation) and coincides with the
usual O(6) limit of the IBM. The lower part is generated by
�Q̂ 3 Q̂ 3 Q̂��0�; the spectrum is one of g vibrations (i.e.,
quadrupole vibrations around a spheroidal equilibrium

FIG. 1. Partial spectra generated by the quadratic and cubic
O(6)-conserving interactions �Q̂ 3 Q̂��0� and �Q̂ 3 Q̂ 3 Q̂��0�.
All levels have O(6) dynamical symmetry and those shown
have s � N . Levels are labeled by their angular momentum
and parity Lp on the right. In the quadratic case states are
further characterized by the O(5) label t, shown at the left
of each level while in the cubic case the K quantum number
is given underneath each rotational band. Boson numbers are
N � 6 and N � 15, respectively, and an L̂2 term is added to
lift the degeneracy in L.
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shape that break axial symmetry [13]) with rotational
bands built on each vibration. Spectra are repeated for
O(6) representations with s � N , N 2 2, N 2 4, . . . , but
only s � N is shown in the figure. Eigenstates of �Q̂ 3

Q̂ 3 Q̂��0� are, besides �N�, s, L, and ML, characterized
by a label K (not associated with any algebra) which is
interpreted as the projection of the angular momentum on
the axis of symmetry. Although a formal definition of this
quantum number is difficult, as it involves the solution of
a third-order differential equation [14], it can be inferred
from the geometric properties of interband and intraband
E2 transitions.

There are some notable differences between the spec-
trum generated by �Q̂ 3 Q̂ 3 Q̂��0� and that in the SU(3)
limit. Specifically, in SU(3) the b (K � 0) and g (K �
2) bands belong to the same SU(3) representation, are de-
generate in energy, and are connected by strong E2 tran-
sitions. In the �Q̂ 3 Q̂ 3 Q̂��0� spectrum, in contrast,
the K � 0 “b” band belongs to the O(6) representation
s � N 2 2 and has no E2 transitions to the g band
(s � N) in the exact limit. These differences propa-
gate to higher-lying excitations: for example, the lowest
K � 0 two-phonon state in the �Q̂ 3 Q̂ 3 Q̂��0� spec-
trum is a g2 excitation while the corresponding state in
the SU(3) limit is a mixture of b2 and g2 [15].

Whether cubic interactions between the bosons of IBM
are required is not clear at the moment since comprehen-
sive phenomenological studies of this question are lack-
ing. Nevertheless, the spectrum generated by �Q̂ 3 Q̂ 3

Q̂��0� has many of the properties that are typical of de-
formed nuclei. This is illustrated in Fig. 2 where part of
the eigenspectrum obtained from a numerical diagonaliza-
tion of the Hamiltonian

Ĥ � k�Q̂ 3 Q̂ 3 Q̂��0� 1 k0L̂ ? L̂ , (3)

is shown for k � 2.9 keV, k0 � 8 keV, and N � 15
bosons, and is compared with observed levels in 162

66Dy96.
The levels shown are members of the ground, g, and the
K � 0 and K � 4 bands which presumably have double-
g character; the collective nature of the latter awaits ex-
perimental confirmation from lifetime measurements [16].
Electric quadrupole transitions can be calculated with an
E2 operator proportional to Q̂, T̂ �E2� 	 ebQ̂, and are
shown in Table I for the g-to-ground E2 transitions in
162Dy. A detailed, quantitative comparison with the data
is not the purpose here; rather, the aim is to show that the
spectrum generated by �Q̂ 3 Q̂ 3 Q̂��0� has all the fea-
tures of that of a deformed nucleus.

To continue the analysis of (2), the next case is the se-
quence of nested algebras U�5� . O�5� . O�3�. The set
of generators �ĝi� contained in U(5) but not in O(5) is in
this case �T̂00, T̂2m, T̂4m� where T̂km 	 �dy 3 d̃��k�

m . The
operator T̂00 is scalar in O(5) and hence can never mix
O(5) representations. The operators T̂2m and T̂4m, on the
other hand, have O(5) tensor character (2,0) and appropri-
ate combinations of them might lead to O(5) mixing while
FIG. 2. Partial eigenspectrum of the Hamiltonian (3) and its
comparison with the observed levels of 162Dy. Levels are
labeled by their angular momentum and parity Lp , and all
belong to the O(6) representation s � N .

preserving the U(5) dynamical symmetry. Quadratic com-
binations correspond to �2, 0� 3 �2, 0� and the only O(3)-
scalar terms contained in this multiplication have (0,0) or
(2,2). Neither tensor induces O(5) mixing and one recov-
ers the customary result of the IBM that for rotationally
invariant two-body interactions a U(5) dynamical symme-
try implies O(5). Note, however, that this result is valid
only for symmetric O(5) representations: a (2,2) tensor can
couple a symmetric representation �t, 0� with itself but not

TABLE 1. Calculated and observed g-to-ground E2 transi-
tions in 162Dy.

B�E2; Lg ! Lg� �e2b2�
Lg Lg Experiment a Theory

21
g 01

g 0.024(1) 0.024b

21
g 0.042(2) 0.039

41
g 0.0030(2) 0.0026

31
g 21

g · · · 0.042

41
g · · · 0.023

41
g 21

g 0.0091(5) 0.012

41
g 0.044(3) 0.046

61
g 0.0063(4) 0.0065

51
g 41

g 0.033(2) 0.034

61
g 0.040(2) 0.031

61
g 41

g 0.0063(4) 0.0079

61
g 0.050(4) 0.046

aFrom [17].
bNormalized with eb � 0.121 e b.
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with any other symmetric O(5) representation. This no
longer is the case for nonsymmetric representations [e.g.,
(2,2) couples �t, 0� with �t0, 1� and �t0, 2�]. As a result, in
two-component boson models such as the IBM-2 [18,19]
U(5)-conserving quadratic interactions may induce O(5)
mixing, a conclusion which is also found in [20] via other
arguments. Cubic O(3)-scalar combinations of T̂2m and
T̂4m can be (6,0), (4,2), (2,2), or (0,0) tensors in O(5). Of
those, the first couples �t, 0� with �t 6 k, 0�, k � 2, 4, 6,
while the second mixes �t, 0� with �t 6 2, 0�. So, in this
case the conclusion is that two cubic d-boson interactions
can be defined that induce a different O(5) mixing and
hence have different spectrum generating properties.

A third sequence of nested algebras is U�6� .
SU�3� . O�3�. Breaking the SU(3) dynamical symmetry
only leaves the trivial (dynamical) symmetries U(6) and
O(3), and nothing new is obtained in this case.

Finally, the two sequences of nested algebras U�6� .
U�5� . O�5� and U�6� . O�6� . O�5� can be analyzed
in a similar fashion. They are examples of embeddings
G1 . G2 . G3 and G1 . G0

2 . G3 with G0
2 fi G2. A

priori it is clear that the G2 and G0
2 dynamical symmetries

can be broken by moving between them while conserving
G3. This was pointed out some time ago in the case of the
IBM [21]: a combination of invariant operators of U(5)
and O(6) does not correspond to a single reduction chain
in (2) but retains O(5) as a dynamical symmetry. The
same result is obtained with the method proposed here
by simply noting that the d-boson number operator n̂d

is a scalar under O(5) yet has a (2,0) component under
O(6). Consequently, n̂d and combinations of it (n̂2

d , . . .)
mix O(6) representations while preserving O(5) dynamical
symmetry.

Two concluding remarks are in order to properly place
these results into context. First, it is not the purpose
here to extend symmetry-conserving interactions to higher
order, as done, for instance, in [22] for the IBM. Such
interactions leave all dynamical symmetries of a given
classification in (1) unchanged, whereas the interactions
introduced here conserve only part of them. This leads
to an enrichment of the concept of dynamical symmetry,
but the price to pay is loss of solvability. In the example
of the IBM, the procedure gives rise to a classification
in which all states have O(6) dynamical symmetry with a
structure that drastically differs from the usual O(6) wave
functions.

Secondly, what is proposed here is different from a
partial dynamical symmetry as introduced by Alhassid
and Leviatan [7]. In that work all (dynamical) symmetries
are conserved for part of the eigenspectrum while here
only part of the dynamical symmetries are conserved for
4272
all states. Both are partial but in a different sense. The
order of the interactions plays an important role in these
extensions; this is one of the results found here and is also
true [23] in the case of the partial dynamical symmetries
of Alhassid and Leviatan.

I wish to thank J. P. Elliott and J. A. Evans for
discussions at an early stage of this work.
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