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Particle-Number Reprojection in the Shell Model Monte Carlo Method:
Application to Nuclear Level Densities
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We introduce a particle-number reprojection method in the shell model Monte Carlo that enables the
calculation of observables for a series of nuclei using a Monte Carlo sampling for a single nucleus.
The method is applied to calculate nuclear level densities in the complete �pf 1 g9�2�-shell using a
good-sign Hamiltonian. Level densities of odd-A and odd-odd nuclei are reliably extracted despite an
additional sign problem. Both the mass and the Tz dependence of the experimental level densities are
well described without any adjustable parameters. The odd-even staggering observed in the calculated
backshift parameter follows the experimental data more closely than do empirical formulas.

PACS numbers: 21.10.Ma, 21.60.Cs, 21.60.Ka, 27.40.+z
The interacting shell model has successfully described
a variety of nuclear properties. However, the size of the
model space increases rapidly with the number of valence
nucleons and/or orbits, and exact diagonalization of the
nuclear Hamiltonian in a full major shell is limited to nuclei
with A & 50 [1,2]. The development of quantum Monte
Carlo methods for the nuclear shell model allowed realistic
calculations of finite- and zero-temperature observables in
model spaces that are much larger than those treated by
conventional diagonalization techniques [3,4].

The Monte Carlo method was successfully adapted to
the microscopic calculation of nuclear level densities [5].
Accurate level densities are needed for estimating nuclear
reaction rates, e.g., neutron and proton capture rates. The
nucleosynthesis of many of the heavy elements proceeds
by radiative capture of neutrons (s and r processes) or pro-
tons (rp process) in competition with beta decay [6,7].
Theoretical approaches to level densities are often based
on the Fermi gas model, i.e., the Bethe formula [8], which
describes the many-particle level density in terms of the
single-particle level density parameter a. Shell corrections
and two-body correlations are taken into account empiri-
cally by defining a fictitious ground state energy. In the
backshifted Bethe formula (BBF) the ground state energy
is shifted by an amount D. This formula describes well the
experimental level densities of many nuclei if both a and
D are fitted for each individual nucleus [9]. While these
parameters have been discussed in terms of their global
systematics, it is difficult to predict their values for par-
ticular nuclei.

The nuclear shell model offers an attractive framework
for calculating level densities, but the model space required
to calculate level densities at excitation energies in the
neutron resonance regime is usually too large for conven-
tional diagonalization methods. We have recently devel-
oped a method [5] to calculate exact level densities using
0031-9007�99�83(21)�4265(4)$15.00
the shell model Monte Carlo (SMMC) approach, and ap-
plied it to calculate the level densities of even-even nu-
clei from iron to germanium [10]. Fermionic Monte Carlo
methods are usually hampered by the so-called sign prob-
lem, which causes a breakdown of the method at low
temperatures. A practical solution in the nuclear case was
developed in Ref. [4] but the associated extrapolation er-
rors are too large for reliable calculations of level densities.
In Ref. [5] the sign problem was overcome by construct-
ing a good-sign interaction in the �pf 1 g9�2�-shell that
includes correctly the dominating collective components
of realistic effective interactions [11]. The SMMC level
densities are well fitted by the BBF, and both a and D can
be extracted from the microscopic calculations.

The SMMC approach is computationally intensive. In
particular, the SMMC level densities require calculation of
the thermal energy at all temperatures. The weight func-
tion used in the random walk is temperature dependent,
and a new Monte Carlo sampling is required at each tem-
perature. Since this procedure must be repeated for each
nucleus, the calculations are time consuming. In this paper
we describe a particle-number reprojection method that al-
lows us to calculate observables for a series of nuclei using
Monte Carlo sampling for one nucleus only. The random
walk is done with a weight function proportional to the
partition function of a given even-even nucleus (which is
positive definite for a good-sign interaction), and the ther-
mal observables are then calculated for several nuclei by
reprojection on different particle numbers (both even and
odd). This method allows significantly more economical
calculations of level densities. We apply the method in the
full �pf 1 g9�2�-shell to study the systematics of a and D

for even-even, odd-A, and odd-odd manganese, iron, and
cobalt nuclei. A direct comparison with both experimen-
tal data and empirical formulas is presented. The agree-
ment with the data is remarkably good with no adjustable
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parameters in the microscopic calculations. Furthermore,
we find that the SMMC values follow the data more closely
than do the empirical values.

The Monte Carlo method is based on the Hubbard-
Stratonovich representation of the imaginary-time propa-
gator, e2bH �

R
D�s�G�s�Us , where G�s� is a Gaussian

weight and Us is the propagator of noninteracting nucleons
moving in fluctuating auxiliary fields s which depend on
imaginary time. The canonical thermal expectation value
of an observable O is given by �O�A �

R
D�s�G�s� 3

TrA�OUs��
R

D�s�G�s� TrAUs , where TrA denotes a
trace in the subspace of a fixed number of particles A. In
actual calculations we project on both neutron number N
and proton number Z, and in the following A will denote
�N , Z�. We rewrite

�O�A � �TrA�OUs��TrAUs�W , (1)

where we have introduced the notation

�Xs�W �
R

D�s�W �s�XsR
D�s�W �s�

, (2)

and W�s� � G�s� TrAUs . For an even number of par-
ticles with a good-sign interaction, W�s� is positive defi-
nite. In the Monte Carlo method we choose M samples
(each denoted by sk) according to the weight function
W�s�, and estimate �Xs�W 	

P
k Xsk �M.

We assume that the Monte Carlo sampling is done for
a nucleus with particle number A, and consider the ratio
ZA0�ZA between the partition function of a nucleus with
A0 particles and the partition function of the original
nucleus. In the notation of Eq. (2),

ZA0�b�
ZA�b�

�
TrA0e2bH

TrAe2bH
�

*
TrA0Us

TrAUs

+
W

. (3)

Similarly, the expectation value of an observable O for
the nucleus with A0 particles can be calculated from

�O�A0 �
�� TrA0OUs

TrA0Us
� � TrA0Us

TrAUs
��W

�TrA0Us

TrAUs
�W

. (4)

The Monte Carlo walk is carried out by projection on a
fixed A, and Eqs. (3) and (4) are then used to calculate
the partition functions and observables for a family of
nuclei with A0 fi A.

We applied the method to nuclei in the �pf 1 g9�2�-
shell, using the Hamiltonian of Ref. [5]. The single-
particle energies are computed in a central Woods-Saxon
potential V �r� plus spin-orbit interaction, while the two-
body interaction includes a monopole isovector pairing
of strength g0 plus a separable surface-peaked interac-
tion [12] y�r, r0� � 2x�dV�dr� �dV�dr 0�d�r̂ 2 r̂0�. The
surface-peaked interaction is expanded into multipoles and
only the quadrupole, octupole, and hexadecupole terms
are kept. The strength x is determined self-consistently
and renormalized. The strength of the pairing interaction
4266
g0 	 0.2 is determined from experimental odd-even mass
differences. Both the pairing and the surface-peaked in-
teractions are attractive and lead to a good-sign Hamilton-
ian. A repulsive isospin-dependent interaction leads to a
sign problem, and was included perturbatively in recent
level density calculations in sd-shell [13] and pf-shell
[14] nuclei.

In the particle-reprojection method described above we
have assumed that the Hamiltonian H is independent of
A. Suitable corrections should be made if some of the
Hamiltonian parameters vary with A. Since x depends
only weakly on the mass number A (~ A21�3), and the
pairing strength g0 is constant through the shell, the largest
variation is that of the single-particle energies of the orbit
a, ea�A�. To correct this variation we approximate the
thermal energy of A0 � �N 0, Z0� particles by

EA0�b� 	
X
a

�ea�A0� 2 ea�A�� �na�A0 1 �H�A0 , (5)

where H is the Hamiltonian for a nucleus with A particles.
In calculating the energy for A0 particles from (5), we used
in the propagator (e2bH) the Hamiltonian H for nucleus
A rather than A0. To minimize the error we reproject on
nuclei with N 0 2 Z0 values close to N 2 Z (the Woods-
Saxon potential depends on N 2 Z). In the applications
below we have checked that the resulting error in the level
density is negligible.

We used the reprojection method to calculate the ther-
mal energies versus b for 50 56Mn, 52 58Fe, and 54 60Co
including odd-A and odd-odd nuclei. We sampled accord-
ing to the even-even nucleus 56Fe and reprojected onto
53 56Mn, 54 58Fe, and 54 60Co, while the nuclei 50 52Mn
and 52,53Fe were reprojected from Monte Carlo sampling
of the odd-odd N � Z nucleus 54Co. The calculations
were done for values of b between b � 0 and 1 MeV21

in steps of Db � 1�16, and between 1 and 2.5 in steps
of Db � 1�8. At each b we used about 4000 indepen-
dent samples. Reprojected energy calculations typically
have larger statistical errors at larger values of b. There-
fore we also performed direct Monte Carlo runs (without
reprojection) for the above nuclei at several values of b

between 1.75 and 3.0 MeV21. For odd-A and odd-odd
nuclei, a typical statistical error for the energy at b 
 2.5
is 
0.5 MeV, while for b * 3 the error is too large for
the data to be useful. This is just another manifestation of
the sign problem for nuclei with an odd number of protons
and/or neutrons. Fortunately, because of the high degen-
eracy in the vicinity of the ground state of these nuclei, the
thermal energy is already close to its asymptotic value.

Figure 1 shows the calculated SMMC thermal energies
versus b for a series of cobalt isotopes. The effect of
pairing on the thermal energies at low temperatures (i.e.,
large b) is clearly seen in their uneven spacings. The inset
of Fig. 1 shows the SMMC thermal energies (triangles
with error bars) for 60Co for the large values of b only.
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FIG. 1. The SMMC thermal energies versus b for 54 60Co
(symbols). Shown on the right are the extrapolated values of
the ground-state energy. Inset: the SMMC thermal energies
(triangles) at large b values for 60Co. The diamonds are the
energies obtained by averaging the large-b results above the
corresponding b.

In calculating the level density versus excitation energy,
it is important to get accurate values of the ground state
energy. In Ref. [10] we used, for even-even nuclei, a
two-state model (01 and 21) to obtain a two-parameter
fit to the thermal energy and �J2�. For odd-A and odd-
odd nuclei this method is not useful since in general we
do not know the spin of the ground state and first excited
state. Moreover, these nuclei do not have a gap, and often
more than two levels contribute to the thermal energy at the
lowest temperatures for which Monte Carlo calculations
are still possible. We estimate the ground state energy of
these nuclei by taking an average of the large-b SMMC
values for the thermal energy. The diamonds in the inset
of Fig. 1 are such average values for 60Co. We estimate
the ground state energy of the odd-A and odd-odd nuclei
to be reliable to about 
0.3 MeV.

To calculate the level density we first find the partition
function ZA0 by integrating the relation 2≠ lnZA0�≠b �
EA0 . The level density is then given by

rA0 � �2pb22CA0�21�2eS0
A , (6)

in terms of the canonical entropy SA0 � bEA0 1 lnZA0

and the heat capacity CA0 � 2b2dEA0�db.
The level densities for the cobalt isotopes of Fig. 1 are

shown in Fig. 2 as a function of excitation energy. These
total level densities are fitted to

r�Ex� 	 g

p
p

24
a21�4�Ex 2 D 1 t�25�4e2

p
a�Ex2D�,

(7)

where t is a thermodynamic temperature defined by Ex 2

D � at2 2 t and g � 2. Equation (7) is a modified
version of the BBF derived by Lang and Le Couteur [15].
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FIG. 2. The SMMC level densities of the 54 60Co isotopes.
The solid lines describe a fit to the BBF (7). The inset shows
the level density of 55Co at low excitation energies. The circles
are the SMMC results, the solid line is a fit to (7), and the
dashed line is a fit to (7) but without the t term.

It differs from the usual BBF by the additional “tempera-
ture” term t in the preexponential factor, and provides a
better fit to the calculated level density at lower excitation
energies. The solid lines in Fig. 2 are the BBF level den-
sities (7) fitted to the SMMC level densities in the range
Ex , 20 MeV. In general we obtain a good fit down to
energies of 
1 MeV or smaller. The inset shows the low
energy fit for 55Co. The dashed line is a fit to the BBF
without t; this approximation starts to diverge around
2 MeV owing to the singularity of the preexponential
factor �Ex 2 D�25�4. Notice that the level density for
an odd-odd cobalt (e.g., 54Co) is higher than the level
density of the subsequent odd-even cobalt (e.g., 55Co)
even though the latter has a larger mass. This is due to
reduced pairing correlations in the odd-odd nucleus that
lead to a smaller backshift D.

We extracted the level density parameters a and D for
the above nuclei by fitting Eq. (7) to the SMMC level den-
sities. The results for a and D versus mass number A are
shown in Fig. 3. The Monte Carlo results (solid squares)
are compared with the experimental data (X’s) quoted in
Refs. [9] and [16]. The solid lines describe the results
of the empirical formulas of Refs. [17]. The calculated
values of a depend smoothly on the mass, unlike some of
the empirical results, and in the case of the cobalt isotopes
follow the data more closely. The staggering seen in the
behavior of D versus A is a result of pairing effects. In the
empirical formulas, D is close to zero for odd-even nuclei,
positive for even-even nuclei, and negative for odd-odd
nuclei. We see that the present values of D follow rather
closely the experimental values, and are in general in bet-
ter agreement than the empirical values. The lower values
of a (relative to the experimental values) for the odd-odd
4267



VOLUME 83, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 22 NOVEMBER 1999
50 52 54 56 58 60
A

−4

−2

0

Co
−4

−2

0

∆(
M

eV
)

Fe

50 52 54 56 58 60
A

4

5

6

Co
4

5

6

a(
M

eV
−1

)

Fe
−4

−2

0

2
Mn

4

5

6

7
Mn

FIG. 3. The single-particle level density parameter a (left
column) and the backshift parameter D (right column) for Mn,
Fe, and Co isotopes. The solid squares (connected by dashed
lines) are the results of fitting the calculated SMMC level
densities to Eq. (7), while the X’s are the experimental results.
All the experimental values are from the compilations of [9]
(assuming rigid body moment of inertia), except for 58Co and
59Co where the values quoted in [16] are used. The solid lines
are the empirical formulas of [17].

manganese nuclei are compensated by corresponding
lower values of D, and thus do not cause significant dis-
crepancies in the level densities for Ex & 10 MeV.

To demonstrate how the Monte Carlo results improve
over the empirical formulas we show in Fig. 4 the calcu-
lated level densities of three A � 55 nuclei (Mn, Fe, and
Co). According to the empirical formula, D 
 0 for odd-
A nuclei, and the values of a are similar (since A is the
same). The empirical formulas therefore predict similar
level densities for these nuclei. However, the SMMC level
densities of these three nuclei are seen to be quite differ-
ent from each other. Indeed, we find that D is positive
for 55Co, close to zero for 55Fe, and negative for 55Mn.
The experimental level densities (dashed lines) are in good
agreement with the Monte Carlo calculations, suggesting a
Tz � �N 2 Z��2 dependence of the level density, which
is usually ignored in empirical formulas but is clearly ob-
served in our microscopic calculations.

In conclusion, we have described a particle-number re-
projection method in the SMMC that enables the calcu-
lation of thermal properties for a series of nuclei using
Monte Carlo sampling for a single nucleus. We applied
the method to the calculation of level densities.
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FIG. 4. The SMMC level densities of three A � 55 nuclei:
55Mn (circles), 55Fe (squares), and 55Co (diamonds). The
dashed lines are the experimental level densities.
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