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It was recently pointed out that global solutions of Einstein’s equations for a 3-brane univ
embedded in four spatial dimensions give rise to a Friedmann equation of the formH ~ r on the
brane, instead of the usualH ~

p
r, which is inconsistent with cosmological observations. We reme

this problem by adding cosmological constants to the brane and the bulk, as in the recent scen
Randall and Sundrum. Our observation allows for normal expansion during nucleosynthesis, but
than normal expansion in the very early universe, which could be helpful for electroweak baryoge
for example.
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During the past year, much has been written ab
the possibility of having compactified extra dimensio
with large radii [1]. In the original proposal,MP was
related to the radiusb0 of the N compact dimensions
by M2

P � M2�Mb0�N , whereM is the new fundamenta
quantum gravity scale, which could in principle be as l
as 1 TeV. If so, this would be a partial solution of t
hierarchy problem, i.e., why the weak scale,MW , is 17
orders of magnitude smaller than the Planck scale,MP : it
is becauseb0 is, for some reason, much larger thanM21.
If b0 ¿ M21

P , as is necessary ifM � MW , the particles
and fields of the standard model must be restricted
stay on a 3-dimensional slice (brane) of the fullN 1

3 spatial dimensions; otherwise particle propagation
the new dimensions would already have been see
accelerator experiments. But even with the restrict
of the brane, the idea implies many possibly observa
effects at accelerators. It also poses severe challe
for cosmology. In this Letter we will address one of t
cosmological problems, and comment upon an unexpe
connection to the question of precisely how the hierar
problem is solved using the extra dimensions.

Our starting point is the observation recently made
Binétruy et al. [2,3] that the Friedmann equation for th
Hubble expansion rate of our 3D universe is modifi
even at very low temperatures, by the presence of an e
dimension,y, compactified on a circle or an orbifold
Allowing for the possibility of a cosmological consta
Lb in the full four spatial dimensions, called the bu
the new Friedmann equation for the scale factora of our
brane is [2,4]

H2 �

µ
�a
a

∂2

�

µ
rt

6M3

∂2

1
Lb

6M3 , (1)

instead of the usual relation,H �
q

rt�3M2
P . rt is the

total (vacuum plus matter) energy density on the bra
This expression is derived, as will be explained belo
from the 5D action

S �
Z

d4x dy
q
jgj

µ
1
2

M3R 2 Lb 1 Lbrane

∂
, (2)
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where the action,Lbrane, for the matter living on the brane
results in a stress-energy tensor parametrized asT

m
n �

d�by�diag�2rt, pt , pt , pt , 0�. An interesting aspect of
this result is the fact that, in order to find consiste
global solutions to the Einstein equations in the�4 1 1�-
dimensional spacetime, it is necessary to add a sec
brane [5], a mirror of our own, having equal and oppos
energy density. This topology can be motivated fro
string theory. In the Hǒvrava–Witten picture [6] of the
nonperturbative regime of theE8 3 E8 string theory, the
string coupling is interpreted as an eleventh comp
dimension with a�2 symmetry that truncates the spectru
in order to keep only sixteen supercharges in 10D, i.e.,
N � 1 supersymmetry in 4D after compactification o
a Calabi-Yau manifold. There is good evidence [7] th
over a wide range of energies the theory behaves like a
theory compactified on a�2 orbifold with two 3-branes,
viewed as the remnants of the 10D hypersurfaces wh
the E8 gauge groups were living. The two 3-branes c
also be seen as D3-branes of the type-I string theory [1

Naively, one would expect that, at distances mu
bigger than the size of the fifth dimension, the effects
the extra compact dimension become small correction
the usual 4D equations; thus whenH21 ¿ b0, one should
recover the standard cosmology. However the presenc
the mirror brane contradicts this logic. Let us choose
range of the compact coordinate to bey [ �21�2, 11�2�.
The solutions of the Einstein equations for the sca
factor a� y� behave [2,3] likea0�1 1 Aj yj�2�, with A �
rt. Because the pointsy � 61�2 are identified, the
derivative is discontinuous at this point, anda00�a �
A�d� y� 2 d� y 2 1�2��. The Einstein equations identify
the delta functions with the energy densities of the tw
respective branes. In the limit asb0 ! 0, the two branes
overlap, and their energy densities cancel to first or
in rt because they are equal and opposite. Theref
only terms of order�a0�a�2 � A2 � r2

t survive, even
at arbitrarily late times in cosmological history. Th
resulting expansion rate (1) is probably incompatible w
big bang nucleosynthesis, which is extremely sensit
© 1999 The American Physical Society 4245
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to how the Hubble rate varies with the energy density,
hence temperature. Even if one tunes M so that the
altered expansion rate (1) still gives the correct helium
abundance, it is likely that the other elements will come
out wrong, since their rates of production depend quite
differently on the temperature.

From Eq. (1), one can imagine a very simple escape
from this dilemma [8]. Suppose there is a cosmological
constant L localized on our brane (and, correspondingly,
2L on the mirror brane, although this value will be
corrected by terms of order r in the presence of matter on
the branes), so that rt � L 1 r, where r now denotes
the energy density of normal matter or radiation on the
brane, as opposed to vacuum energy. One can choose Lb

to exactly cancel the L2 terms in Eq. (1), and furthermore
fix the value of L in terms of M and MP:

Lb � 2
L2

6M3 , (3)

L � 66
M6

M2
P

, (4)

where (6) refers to the two respective branes. Condition
(3) ensures the cancellation of the effect of Lb by L2 in
(1), whereas (4) adjusts the overall rate of expansion to
agree with the usual result. The new Friedmann equation
then becomes the conventional one, plus a correction
which is quadratic in the density:

H2 � 6
r6

3M2
P

µ
1 6 r6

M2
P

12M6

∂
. (5)

We have distinguished the values of r on the two branes
by the subscript to emphasize that they need not— in
fact, cannot—be the same. The brane with the positive
solution has a rate of expansion that is consistent with all
current cosmological observations as long as the normal
rate has been recovered by the epoch of nucleosynthesis,
which will be true if 0 , r1 & 0.1 MeV 4 ø L. One
thus finds the constraint that

M * 10 TeV , (6)

which is not much more severe than other accelerator and
astrophysical limits that have recently been placed on the
new gravity scale. The other brane must have r2 # 0,
since otherwise H2 , 0, which has no solution.

The condition (3) is precisely what is needed to get a
static universe in the case of vanishing r: the negative
cosmological constant in the bulk cancels the positive L2

from either brane. The solutions to the Einstein equations
in this case were recently studied by Randall and Sundrum
(RS) [9], but for very different reasons: they found that
the weak scale hierarchy problem is naturally solved on
one of the branes, even if M � MP , and b0 � 50M21

P .
This comes about because the metric tensor has an
exponential dependence on the coordinate of the compact
fifth dimension (see Fig. 1). Using the line element
4246
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FIG. 1. Qualitative dependence of the 3D scale factor a� y�
on the compact dimension y in the solutions of (solid
line) Ref. [2], with vanishing bulk cosmological constant, and
(dashed line) Ref. [9], with Lb given by Eq. (3). a�0� is
nonzero but exponentially small in the latter.

ds2 � 2n2�t, y�dt2 1 a2�t, y�dijdxidxj 1 b�t, y�2dy2,

(7)

it is straightforward to verify the time-independent solu-
tion

a� y� � n� y� � a0e
2kjyj, k �

b0L

6M3 , b� y� � b0 .

(8)

One then observes that, even if all mass parameters in
the Lagrangians formatter on the branes are of the order
MP , the physical masses on the brane at y � 1�2 are
suppressed by the factor e2k�2, which can be of order
MW �MP with only a moderate hierarchy between b0 and
M21

P � M21. Since gmn enters differently in the kinetic
than in the mass terms for a scalar field, once the kinetic
terms are canonically normalized, masses get multiplied
by a�1�2� � e2k�2. This idea therefore appears to be a
much more natural solution to the hierarchy problem than
the original proposal, which required b0M to be of order
�MP�M�2�N , where N is the number of extra dimensions.

We now see that the static solution of RS is the starting
point for our idea, which is to recover the normal expan-
sion of the 3D universe by perturbing large, balancing cos-
mological constants in the bulk and the branes by a small
density of matter or radiation on the branes. Intuitively, it
is clear that solutions with nonvanishing r must exist, and
we will now take some time to demonstrate this explic-
itly, in the vicinity of our brane. We were not able to find
global solutions in closed form once matter with an arbi-
trary equation of state p � vr was introduced. However,
we are really most interested in the expansion rate on our
own brane, so it suffices to solve the Einstein equations in
that region. To simplify the appearance of the solutions,
we will translate the y coordinate by y ! y 1 1�2, so that
the brane which we inhabit is located at y � 0.

We must solve the Einstein equations for the metric (7),
now allowing for time dependence in a, b, and n. It is
always possible to choose a gauge so that n�t, 0� is constant
at y � 0, without introducing g05 elements in the metric.
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We will make this choice, and drop all terms involving �n
since they are not relevant for the solution in the immediate
vicinity of the brane. With this simplification, the 5D
Einstein equations, Gmn � M23Tmn , become [2]

�a
a

µ
�a
a

1
�b
b

∂
�

n2

b2

∑
a00

a
1

a0

a

µ
a0

a
2

b0

b

∂∏
1

1
3M3 T00,

(9)
µ
�a
a

∂2

1 2
ä
a

1 2
�b
b

�a
a

1
b̈
b

� 2
n2

a2M3 Tii 1
n2

b2

Ω
2

a00

a
1

n00

n
a0

a

µ
a0

a
1 2

n0

n

∂
2

b0

b

µ
n0

n
1 2

a0

a

∂æ
, (10)
µ
�a
a

∂2

1
ä
a

�
n2

b2

a0

a

µ
a0

a
1

n0

n

∂
2

n2

3b2M3 T55 , (11)

n0

n

�a
a

1
a0

a

�b
b

2
�a0

a
�

1
3M3 T05 � 0 (12)

in the vicinity of y � 0. Close to our brane, the nonzero
elements of the 5D stress-energy tensor are

T00 � n2�r 1 L�d�by� 1 n2�Lb 1 V �b�� ,

Tii � a2�p 2 L�d�by� 2 a2�Lb 1 V �b�� , (13)

T55 � 2b2�Lb 1 V �b� 1 V 0�b��b� ,

where d�by� � b21d� y� is the generally covariant form
of the delta function. There are also source terms propor-
tional to b21d� y 2 1�2� at the mirror brane, but these will
not directly concern us in what follows. The terms involv-
ing V �b� would result if there is a potential that stabilizes
the compact dimension. Their presence does not qualita-
tively change any of our conclusions, so we set V �b� to
zero in what follows.

The generalization of the static solution (8) can be
parametrized as

a�t, y� � a0�t� exp� 1
2 Ajyj 1

1
2 A2y2 1 · · ·� ,

b�t, y� � b0 exp� 1
2 Bjyj 1

1
2 B2y2 1 · · ·� , (14)

n�t, y� � exp� 1
2 N jyj 1

1
2 N2y2 1 · · ·� .

By our choice of gauge for time, there is no n0�t� function.
We have not assumed separability of the solution here,
since the coefficients A, B,N , etc., need not be static;
however we will see that their time dependence arises
entirely from that of r and p. The fact that b0 is constant
in time is not obvious, but will be proven to be consistent
with Eqs. (9)–(12).

As in Ref. [2], the linear-in-j yj coefficients, A and N ,
are determined by the singular parts of Eqs. (9) and (10),
i.e., those involving the delta functions and second spatial
derivatives. One finds that

A � 2
1
3 b0M23�r 1 L� ,

N � b0M23�p 1
2
3 r 2

1
3 L� .

(15)

Therefore, to obtain solutions that are growing in the
direction of the mirror brane, which are needed to solve
the hierarchy problem on our own, we would have to
choose L , 0 here, about which we shall say more
below. The analogous coefficient B is not determined
in this way because b00 appears nowhere in the Einstein
equations. But it is constrained by Eq. (12). Inserting
the ansatz (14) in this equation, and taking v � p�r to
be constant (which is a weak restriction since p and r

refer only to the matter and radiation), one can eventually
show that

B �
b0

M3

∑
r 1 p 2 L�1 1 v� ln

µ
1 1

r

L

∂∏
1 O �A2,N2� .

(16)

and it is consistent to take �b0 � 0. Thus the scale factor
of the compact dimension, although it expands inside the
bulk, is strictly constant on our brane. Equation (16) is
not a complete specification for B since A2 and N2 are
not yet known, but in fact we will never need B for
determining the Friedmann equation on our brane.

It remains to satisfy the nonsingular parts of the other
Einstein equations, (9)–(11), near y � 0. The knowledge
of A and N is all that is needed to specify Eq. (11) at
y � 0 because no second derivatives appear. One obtainsµ

�a0

a0

∂2

1
ä0

a0
�

1
36M6 �L 1 r� �2L 2 r 2 3p� 1

Lb

3M3

�
r 2 3p

6M2
P

2
r�r 1 3p�

36M6 , (17)

where the second equation follows from using our previous
determination of L and Lb [Eqs. (3) and (4)]. The leading
term reproduces the usual prediction of general relativity,
and the second term corresponds to the quadratic correction
in Eq. (5). Indeed, in light of the energy conservation law
on the brane, �r � 23H�r 1 p�, which is true regardless
of the extra dimension [2], Eq. (5) is the only relation
consistent with (17) when v � p�r is assumed to be
constant.

In contrast to the new Einstein equation (11) associated
with the fifth dimension, the G00 and Gii equations (9)
and (10) depend on the quadratic coefficients A2 and N2
at y � 0, because of the presence of a00 and n00. With two
equations in two unknowns, it is always possible to find
values of A2 and N2 such that the resulting equations for
a0�t� are consistent with (5) and (17). Therefore Eqs. (9)
and (10) add no new information on the brane, although
they would be necessary if one wanted to deduce the full
y dependence of the solutions in the bulk.

In the above derivation, it was shown that the brane
whose masses are small by the RS mechanism must have
L , 0. Unfortunately, we already saw in Eq. (5) that
the brane with negative L must have an energy density
r2 # 0, which is not the case in our universe. This would
4247
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appear to be a serious problem for the RS idea. However,
see the “Note added” below.

The conditions (3) and (4) for the brane and bulk
cosmological constants look strange at first, so some words
of motivation are in order. Although when r � 0, L1 �
2L2 on the two branes, when r fi 0, a global solution
to the Einstein equations is needed in order to derive the
exact relation between L1 and L2, since it involves all of
the coefficients of the expansion (14) [10]:

b1�L1 1 r1�
A�2

� 2
b2�L2 1 r2�

A�2 1 A2y2 1 . . .
. (18)

In addition to this topological relation derived from the
spacetime geometry, there is also a relation involving Lb .
We argue that the latter is a stringent consistency condition
similar to the global tadpole cancellation in string theory
(see, for instance, Ref. [11]):
p

g

b
Lj1 1

p
g

b
Lj2 1

Z 1�2

21�2
dy

p
g

µ
Lb 2

1
2

M3R

∂
� 0 ,

(19)

i.e., the global effective cosmological constant must van-
ish. In the solution of RS, this condition reduces to
L

2
0 1 6M3Lb � 0, which is the relation needed to obtain

a global solution to Einstein equations.
The condition (19) can be understood if the cosmo-

logical constants are viewed as an effective description
of the Ramond-Ramond fields of the underlying string
theory: for instance the value of the �p 1 1� form to
which a p-brane is coupled is reinterpreted as a cosmolog-
ical constant on the p-brane. The condition (19) will now
be necessary to cancel the UV divergences of the string
theory. The connection between the phenomenological
scenario of RS and string theory has recently been exam-
ined by Verlinde [12], and his analysis concludes that the
exponential dependence of the metric in the compact di-
rection is identified with the renormalization group scale
when using the anti–de Sitter space�conformal field the-
ory correspondence, which also corroborates the stringy
origin of the RS mechanism.

Since the normal expansion rate of the universe is
only known to have held between nucleosynthesis and
the present epoch (as was stressed in Ref. [13]), it would
be interesting if the quadratic corrections to the new
Friedmann equation (5) started to become important above
temperatures of several MeV. In the most natural version
of the RS scenario, M and MP are of the same order,
so the corrections become important only at the Planck
scale. However, it is still a logical possibility to imagine
that the fundamental scale M is much smaller than MP .
In this case, one recovers the Arkani-Hamed et al. result
that M2

P � M3b0 which, combined with the gravitational
tests that restrict b0 & 1 mm, gives the constraint M .

108 GeV. With such a large value of M, departure from
normal expansion occurs only above temperatures T *

1 TeV, which is not far above the electroweak scale.
4248
An intriguing possibility would be to increase the rate
of expansion during the electroweak phase transition. If
this occurred, standard model sphaleron interactions could
easily be out of equilibrium in the broken phase [13],
making electroweak baryogenesis more feasible.

As we were submitting this work, Ref. [14] appeared,
which reached conclusions similar to ours.

We thank Emilian Dudas, Nemanja Kaloper, Guy
Moore, Burt Ovrut, and Carlos Savoy for useful discus-
sions. J. M. C. thanks the CEA Saclay theory group for
their kind hospitality.

Note added.—After acceptance of this work, we dis-
covered [15] that the problem of the wrong-sign expan-
sion rate at the second brane can be solved if the extra
dimension is taken to be noncompact, as suggested by
Ref. [16]. Reference [15] shows that by considering mul-
tiple intersecting branes, the whole construction can be
extended to any number of extra dimensions.
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