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Interference of Bose-Einstein Condensates in Momentum Space
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We suggest an experiment to investigate interference effects between two spatially separated Bose-
Einstein condensates. In the presence of coherence, the dynamic structure factor, measurable through
inelastic photon scattering, is predicted to exhibit, at high momentum transfer q, interference fringes
with frequency period Dn � q�md, where d is the distance between the condensates. We show
that this coherent configuration corresponds to an eigenstate of the physical observable measured in
the experiment and that the relative phase of the condensates can be, hence, created through the
measurement process.

PACS numbers: 05.30.Jp, 03.65.–w, 32.80.– t, 67.40.–w
Dilute Bose-Einstein condensed gases behave as clas-
sical matter waves. This remarkable feature has been di-
rectly confirmed by several recent experiments [1–4]. In
particular, very clean interference patterns generated by
two overlapping condensates have been observed through
absorption imaging techniques [1]. Interference phenom-
ena produced by matter waves are key features underlying
the quantum mechanical behavior of matter, so it is of
considerable interest to understand the new role played by
Bose-Einstein condensation (BEC).

Bose-Einstein condensed gases can be regarded as clas-
sical objects because, according to Bogoliubov prescrip-
tion, the corresponding field operator can be replaced by
a classical field, resembling the classical limit of quantum
electrodynamics. Differently from the case of the electro-
magnetic field which is governed by the Maxwell equa-
tions, the field associated with a Bose-Einstein condensate
obeys equations of quantum nature which reduce, for di-
lute and cold gases, to the Gross-Pitaevskii equation [5]:
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where Vext is the external potential confining the gas, and
g � 4p h̄2a�m is the interaction coupling constant, fixed
by the s-wave scattering length a. The field C has the
meaning of an order parameter and is often called the
“wave function of the condensate.” As a consequence of
the quantum nature of Eq. (1), key features of the field C,
as, for example, interference patterns, depend explicitly
on the value of the Planck constant.

The fact that two overlapping condensates behave as
coherent matter waves giving rise to interference is not,
however, obvious. In a similar context Anderson [6]
raised the intriguing question: “Do two superfluids which
have never seen one another possess a definitive phase?”
This question has been the object of theoretical specu-
lations [7] and has been more recently reconsidered [8–
12] after the experimental realization of BEC in trapped
atomic gases. The point of view shared by most authors
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is that the relative phase between two condensates is “cre-
ated” during the measurement. In other words, even if
the initial configuration is not coherent and the relative
phase between the condensates is not fixed, one can still
observe interference in a single realization of the experi-
ment, as explicitly proven in [1]. However, measuring
fringe patterns in the density profiles requires overlapping
of the condensates in coordinate space and one cannot ex-
clude the possibility that interactions among atoms block
the relative phase before measurement [10,13].

In this Letter, we propose an alternative way to inves-
tigate interference and coherence effects, by exploring the
behavior of the condensate in momentum rather than in co-
ordinate space [14]. Our proposal is stimulated by the re-
cent experiment of [15] where, by measuring the dynamic
structure factor at high momentum transfer via stimulated
two-photon Bragg scattering, it was possible to investigate
the momentum distribution of a single condensate. In this
paper we consider two parallel trapped condensates, lo-
cated at distance d along the x axis and described by the
order parameters Ca and Cb , respectively. Geometries of
this type are now becoming available via optical confine-
ment techniques. In the first part of the work we show
that the coherence between the two separated condensates
can give rise to interference signals in measurable quanti-
ties such as the momentum distribution and the dynamic
structure factor. In the second part we discuss the conse-
quences of the measurement process which can bring two
initially independent condensates into a coherent configu-
ration with a well-defined relative phase.

In the presence of coherence, the order parameter of the
whole system is given by the linear combination Cc �
Ca 1 eifCb . The corresponding many-body function is
jc� � �cy�N j �, where cy is the particle creation operator
in the state Cc, and j � is the vacuum of particles.
In the following we assume, for simplicity, that the
two condensates have the same shape, contain the same
average number of atoms (Na � Nb � N�2), and that the
potential separating the two condensates is large enough
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to exclude overlap between the two wave functions.
Under these conditions we can write Ca�r� � C0�r 1

d�2� and Cb�r� � C0�r 2 d�2�, where C0 is the order
parameter of a single condensate obeying Eq. (1) and
normalized to

R
drjC0j

2 � N�2. In momentum space,
the order parameter takes the form

C�p� � e2ipxd�2 h̄C0�p� 1 ei�f1pxd�2 h̄�C0�p� , (2)

where C0�p� � �2p h̄�23�2
R

dr e�2ip ? r�h̄�C0�r�.
Let us calculate the average value of the momentum

distribution operator n̂�p� � Ĉy�p�Ĉ�p�, where Ĉ�p� is
the field operator in momentum representation. For the
coherent configuration (2) one finds the result n�p� �
�n̂�p�� � 2�1 1 cos�pxd�h̄ 1 f��n0�p� which exhibits
interference fringes with period Dpx � 2p h̄�d [16]. In
this equation, n0�p� � jC0�p�j2 is the momentum dis-
tribution of each condensate. In the absence of coher-
ence, the many-body wave function has instead the form
�ay�Na �by�Nb j �, where ay and by are the particle creation
operators in the states Ca and Cb , respectively. This state
corresponds to two independent condensates with fixed
number of atoms Na and Nb , respectively, and the aver-
age of the momentum distribution operator takes the value
n�p� � 2n0�p� which, as expected, does not exhibit in-
terference. Measuring the momentum distribution of two
separated condensates is, consequently, a natural way to
determine their relative phase and to point out the occur-
rence of coherence.

The momentum distribution of the condensate can be
investigated experimentally by measuring the dynamic
structure factor at high energy and momentum transfer
[17]. A useful description is provided by the impulse
approximation [18]:

S�q, E� �
m
q

Z
n�Y , py , pz� dpy dpz , (3)

which relates the dynamic structure factor to the so-
called longitudinal momentum distribution n�px� �R

n�px , py , pz� dpy dpz . In (3) E and q are the energy
and momentum transferred by the photon to the system
and Y � m

q �E 2 q2�2m� is the relevant scaling variable
of the problem [19]. The vector q has been taken along
the x direction. Impulse approximation assumes that the
system, after scattering with the photon, can be described
in terms of a scattered atom propagating with momentum
p 1 q and �N 2 1� atoms remaining in the unperturbed
configuration. This approximation has been extensively
used to analyze the momentum distribution of various
classical and quantum systems, including liquids and
solids, through deep inelastic neutron scattering. In
particular, it has been employed to extract the condensate
fraction of superfluid 4He [20]. The impulse approxima-
tion is accurate at large q where one can ignore final state
interaction effects which are responsible for both a shift
of the peak energy with respect to the free recoil value
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Er � q2�2m and for a broadening of the function S�q, E�.
These effects are always important in the case of liquid
helium where one must use sophisticated theories beyond
impulse approximation in order to obtain information on
the momentum distribution starting from the experimental
measurement of S�q, E�. The situation is very different
in a dilute gas where the quantum depletion of the con-
densate is negligible and the momentum q transferred to
the sample can be large compared to the inverse of the
healing length, but still small compared to the inverse of
the scattering length. On this scale, final state interactions
can be taken into account using Bogoliubov theory, and
the impulse approximation can be shown to be accurate in
realistic experimental conditions (see below).

First experimental measurements of the dynamic struc-
ture factor of a trapped Bose gas have been presented in
[15] by stimulated two-photon Bragg scattering. In this ex-
periment the condensate is illuminated by two laser beams
with wave vectors k1 and k2 � k1 2 q�h̄ and frequency
difference E�h̄. A stimulated light-scattering process con-
verts photon 1 into photon 2 and transfers momentum q
and energy E to the sample. The measurement of the
number of the scattered atoms then provides the value of
S�q, E� and, hence, for large values of q, the value of the
longitudinal momentum distribution n�px�. In this experi-
ment the scattered atoms were detected after switching off
the trap. It is, however, possible to devise an experiment
where the scattered atoms have enough energy to leave the
trap so that the two condensates remain confined in their
original traps after the measurement, allowing for a repe-
tition of the experiment. The authors of [15] have also
provided first theoretical estimates of final state interac-
tion effects. The relative shift of the peak is a small effect,
fixed by the ratio m�Er where m � gn�0� is the chemical
potential and n�0� is the central density of the gas. Typi-
cal values in the experiment of [15] are Er � �20 100�m,
depending on the density of the sample. The broadening
of S�q, E� due to interactions is of the order of the chemi-
cal potential and should be compared with the broadening
DE � h̄q�mRx , fixed by the width h̄�Rx of the momen-
tum ditribution of the condensate (Doppler broadening).
Here Rx is the radius of the condensate in the x direction,
determined by the Thomas-Fermi relation m � mv2

xR2
x�2,

where vx is the radial frequency of the harmonic poten-
tial trapping each condensate. For large values of q, the
Doppler broadening, accounted for by Eq. (3), is the lead-
ing effect. This happens if [15] Er�m . 0.02�m�h̄vx�2,
a condition well satisfied in the low density samples inves-
tigated in this experiment.

An important feature predicted by (2) is that, in the
presence of coherence, also the dynamic structure factor
exhibits interference. In fact, inserting the corresponding
result for the momentum distribution into the impulse
approximation expression (3), one finds

S�q, E� � 2�1 1 cos�Yd�h̄ 1 f��S0�q, E� , (4)
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where S0�q, E� is the dynamic form factor relative to each
condensate. The fringes have a period

Dn �
DE
2p h̄

�
q

md
, (5)

and their position is fixed by the value of the relative
phase f which can be consequently measured. Notice
that the ratio between the Doppler width of S�q, E� and
the distance between two fringes scales as �d�Rx . Of
course results (4) and (5) require that the experimental
uncertainty in the momentum transferred by the photons
be smaller than h̄�d. The applicability of impulse ap-
proximation also demands that the energy of the scattered
atoms, of the order of the recoil energy �q2�2m, be larger
than the height of the barrier separating the two conden-
sates. In the following, we assume that this condition be
satisfied. In this case the reflection of the scattered atom
from the barrier is negligible and the dynamic structure
factor S�q, E� will be sensitive to the relative phase f of
the two condensates.

In Fig. 1 we show a typical prediction for the dynamic
structure function in the absence (dashed line) and in
the presence of coherence (full line) between the two
condensates. The curves have been calculated in impulse
approximation for a gas of sodium atoms trapped in
two identical and parallel cigar shaped harmonic traps
with frequencies nz � 10 Hz, n� � 100 Hz, and central
density equal to 0.5 3 1014 cm23. The distance between
the centers of the trap is d � 4Rx � 33 mm and the
momentum transfer q is equal to 21.3h̄�mm�21. With
such parameters the ratio between the recoil energy Er

and the chemical potential m is 130 and the broadening of
the dynamic structure factor due to final state interactions
can be shown to be negligible.

It is interesting to compare the interference fringes ex-
hibited by the momentum distribution with the ones char-

FIG. 1. Dynamic structure factor calculated with (full line)
and without (dashed line) coherence between the two con-
densates. The relative phase was taken equal to zero, and
n � E�2p h̄.
acterizing the density of two expanding and overlapping
condensates [1]. A simple estimate of the density fringes
is obtained by neglecting interaction effects between the
two condensates during the expansion. This is a good
approximation if the two condensates are initially well
separated in space. In this case one can show (see [21]
and references therein) that for large times the density
profile consists of straight line fringes orthogonal to the
x axis and with wave length equal to 2p h̄t�md. Such
fringes have been directly observed in [1].

The fringes of the dynamic structure factor shown in
Fig. 1 are the consequence of the coherence assumed for
the order parameter (2). In the remaining part of this Let-
ter, we show that even if the two condensates are ini-
tially independent and their relative phase is not fixed, the
measurement of the dynamic structure factor S�q, E� will
bring the system into a coherent configuration. According
to quantum theory, the system, after measurement, jumps
into an eigenstate of the measured observable. So the
crucial point is to show that the coherent state jc�, differ-
ently from the initial state built with two independent con-
densates, is an eigenstate of the longitudinal momentum
operator n�px�, i.e., the quantity measured in the proposed
experiment.

According to the Bogoliubov prescription, a fully
Bose-Einstein condensed state is not only eigenstate of the
field operator Ĉ, but also of the density as well as of the
momentum density operators. Of course this assumption
does not apply to configurations exhibiting fragmentation
of Bose-Einstein condensation, as happens in the case of
two independent condensates. Furthermore, it ignores mi-
croscopic fluctuations arising from the non-commutativity
of Ĉ and Ĉy. Let us discuss in a quantitative way the
conditions of applicability of the Bogoliubov prescription.
For a proper discussion of the problem it is crucial to
consider macroscopic coarse grained averages of the
physical observable. This averaging takes into account
the finite resolution of the experimental apparatus. On
the other hand, integrating the signal can be crucial in
order to produce visible interference patterns. From the
theoretical side, one can show that only by taking these
averages will the fluctuations of the physical observables
become negligible. We will consider here the problem of
the momentum distribution which is the main object of
the present work. A similar discussion can be repeated
for the fluctuations of the density operator in the context
of experiments where two expanding condensates overlap
in coordinate space and are then imaged. Since the
momentum distribution enters the relevant expression
(3) integrated with respect to py and pz , one needs
only to consider the coarse grained average along the x
direction:

n̂b�px� �
1

bp1�2

Z
dp0 n̂�p0� exp�2�px 2 p0

x�2�b2� ,

(6)
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where n̂�p� � Ĉy�p�Ĉ�p� is the momentum distribution
operator and, for simplicity, we have chosen a Gaussian
convolution. The quantity (6) is expected to be a reason-
able representation of the physical observable character-
izing the measurement of the dynamic structure factor at
high momentum transfer. The fluctuations of the operator
n̂b�px� are easily calculated for the coherent configuration.
After ordering the field operators, one finds the result:

�n̂b�px�n̂b�px�� 2 �n̂b�px��2 �
1

p
2p b

�n̂b�
p

2�px�� ,

where the term in the right-hand side arises from the
noncommutativity of the field operators Ĉ and Ĉy. This
equation explicitly shows that the fluctuations diverge
when b ! 0. Vice versa they become negligible in
the macroscopic limit bn�px� ¿ 1, i.e., if the number
of atoms with momentum between px and px 1 b is
sufficiently large. This condition is easily satisfied for
actual Bose-Einstein condensates and is compatible with
the request that b be smaller than the distance Dpx �
2p h̄�d between two consecutive fringes of the momentum
distribution. As a consequence of the strong quenching of
the fluctuations, the coherent state jc� can be considered,
with proper accuracy, an eigenstate of the operator n̂b�px�.
The situation is very different if one instead considers
two independent condensates occupying, respectively, the
single particle wave functions Ca and Cb . In this case the
randomness of the relative phase produces the additional
contribution �n̂b�px��2�2 to the fluctuations of n̂b�px�
which become macroscopically large.

The above discussion reveals that a state made of two
independent condensates is not an eigenstate of the macro-
scopic observable (6). As a consequence of the measure-
ment of nb , the system will jump into the coherent state
jc� and will exhibit interference patterns. The possibil-
ity of observing interference in a single realization of the
experiment is a peculiar consequence of Bose-Einstein
condensation. Of course one should carry out the mea-
surement within times shorter than the decoherence time
[9,12]. Different realizations of the experiment on inde-
pendent condensates would instead give rise to different
values of the phase and, consequently, to strong fluctua-
tions in the measured signal.

In conclusion, we have pointed out the occurrence of
interference phenomena in momentum space exhibited by
Bose-Einstein condensates separated in coordinate space.
The interference patterns should be visible in the dynamic
structure factor measured in photon scattering experiments
at high momentum transfers.
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