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Comment on “Evidence for an Anisotropic State
of Two-Dimensional Electrons
in High Landau Levels”

In a recent Letter Lilly et al. [1] have shown that a
highly anisotropic state can arise in certain 2D electron sys-
tems. (This effect has also now been seen by another group
[2].) Most of the samples studied are square. In these
samples, the resistances in the two perpendicular directions
are found to have a ratio Ryy�Rxx that may be as much as
60 or larger at low temperature and at certain magnetic
fields. Hall bar measurements were also performed which
can be thought of, at least conceptually, as being measure-
ments on rectangular samples (with side lengths Lx and
Ly). In such measurements Ryy is measured in a sample
with Ly ¿ Lx and Rxx in a sample where Lx ¿ Ly . In
the Hall bar experiments it is found that the anisotropy ra-
tio is much smaller—with Ryy�Rxx � 5. In this Comment
we resolve this discrepancy by noting that the anisotropy of
the underlying sheet resistivities is correctly represented by
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Hall bar resistance measurements but shows up exponen-
tially enhanced in the resistance measurements on square
samples due to simple geometric effects. We note, how-
ever, that the origin of this underlying resistivity anisotropy
remains unknown, and is not addressed here.

Consider a rectangular geometry (Lx by Ly), and assume
that the system is described by a uniform anisotropic sheet
resistivity tensor r. In the so-called “principle” basis, r is
antisymmetric. Lack of any large observed anisotropy [3]
between the resistances R�x1y� �x1y� and R�x2y� �x2y� allows
us to assume that the principle basis axes are aligned with
the edges of the sample. To calculate the resistance we
need to solve E � rj, with = ? j � 0, and = 3 E � 0
with the boundary condition that a net current J is injected
at the current source and extracted at the drain. By solving
for j using the Fourier series methods, the voltage between
two contacts is obtained by integrating the current density
along the edge

R
j ? dl and multiplying by the longitudinal

resistivity in that direction. As in the experiment, we place
the source and drain at the center of the faces of length Ly

and the voltage contacts at the corners. We obtain
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where C � 2 ln2�p � 0.44. The case of Lx ¿ Ly cor-
responds to the Hall bar case, whereupon the measured
resistance Rxx is the sheet resistivity rxx times a geomet-
ric factor Lx�Ly . However, in the experimental case of
a square geometry �Lx � Ly�, an anisotropy ryy . rxx

in the sheet resistivity results in an exponential decrease
in the measured resistance. This decrease is due to the
nature of the current paths in a square sample. Most of
the current flows straight across the sample in the x̂ direc-
tion from the current source in the center of one face to
the drain in the center of the opposite face in something
close to the shortest route possible. Only a very small
amount of current—exponentially small in the parame-
ter �Ly�Lx�

p
ryy�rxx —extends to the edge of the sample

between the voltage contacts a distance away in the ŷ di-
rection. However, it is precisely this small current that
determines the voltage drop measured between these two
contacts. When the ratio ryy�rxx is increased, the cur-
rent flows more directly in the x̂ direction, and the current
between the voltage contacts, and hence the measured volt-
age, decreases exponentially.

Analogously, Ryy is given by switching x and y every-
where they occur in the above equations. For a square
sample with ryy . rxx , we then have

Ryy�Rxx � �p�8� ��ryy�rxx�1�2 2 C�e�p�2�
p

ryy�rxx .

Thus an underlying anisotropy ratio of ryy�rxx � 7 is
sufficient to yield a measured anisotropy ratio of 60. It
is interesting that the Hall bar measurements yield a ratio
ryy�rxx � 5 which is slightly lower. Several factors
might explain this discrepancy: (i) The two Hall bar
measurements and the square measurements are made on
physically different samples (although all are from the
same wafer) and thus may not all have the same resistivity
tensors. (ii) Lack of perfect knowledge of where the
contacts are placed could slightly change the effective
aspect ratio of the sample. (iii) Misalignment of the crystal
axes from the principle axes of the resistivity tensor would
change these results (although an exponential enhancement
would remain, in general). (iv) Some of the conduction
may be from edge state or ballistic transport which cannot
be described in terms of a simple local sheet resistivity.
(v) Large scale inhomogeneities can give spurious results
in the Hall bar measurements if the width of the Hall bar
is smaller than this disorder length scale.
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