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Finite Size Scaling in Ecology
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Finite size scaling techniques are applied to ecology and are shown to predict relationships between
power-law exponents as well as a connection between scaling phenomena in physics and ecology. The
framework presented here ought to be useful for testing the hypothesis of scale invariance in the spatial
distribution of species across a landscape.

PACS numbers: 87.23.Cc
The postulate of self-similarity, which is well under-
stood in the context of critical phenomena in statistical
physics [1], naturally leads to power-law singularities of
generic quantities. Recently, empirical power-law phe-
nomena in ecology have been shown to follow from the
simple assumption of self-similarity or scale invariance in
the spatial distribution of species across a landscape. In
particular, Harte et al. [2] derived the species-area rela-
tionship [3,4]

S � Az , (1)
where S is the number of species sampled in a patch
of area A, and the exponent z is typically around 0.25.
This relationship is both widely observed in nature and
frequently utilized in conservation biology [3,4]. Using
the same self-similarity assumption, Harte et al. [2] also
derived the species-abundance distribution Pi�n�, which
defines the probability that any given species on a biome
Ai has n individuals. Numerical analysis of Pi�n� derived
from the Harte model showed an algebraic dependence,

Pi�n� � nc, (2)
for n values sufficiently below the modal abundance with
a dropoff for larger values of n [2].

The powerful machinery developed for critical phenom-
ena may be applied to ecological data for purposes of
testing the hypothesis of scale invariance, predicting the
relationship between exponents, and deducing universal
behavior. The fluctuations of physical quantities diverge
at the critical point only in the thermodynamic limit, and
finite size scaling [5] is a useful analysis technique for sys-
tems that are not infinite in spatial extent. Recently, this
technique has been used to suggest a similarity between
magnetic systems (finite size systems) and turbulent flow
(finite Reynolds number) [6]. In the context of ecology,
the total number of individuals of all species in an area Ai ,
Ni is finite and Pi�n� ought to exhibit finite size scaling,

Pi�n� �
1
n

f

µ
n

N
f
i

∂
, (3)

where f is a crossover scaling exponent. The scaling func-
tion f is universal (the same within a universality class)
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and crosses over from a power law of the argument with
an exponent equal to c 1 1 to a rapidly decreasing func-
tion as its argument increases through a value around 1.
f is a nontrivial exponent, whose value is not necessarily
equal to 1. Indeed, universality classes in ecology could
be identified by first assessing whether finite size scaling
holds by collapsing distinct abundance distributions mea-
sured in different areas and with different total numbers of
individuals on to one universal scaling curve (an example
is shown in Fig. 1) and then compiling the list of associ-
ated exponents. In addition, there ought to be well-defined
relationships between the scaling exponents.

We now turn to an illustration of these ideas in the
context of the Harte model [2]. The model postulates that
the fraction of species in an area A that is also found in

FIG. 1. Scaling collapse of species-abundance distributions.
The three curves on the right are log-log plots of P0�n� vs n for
the self-similar model of Harte et al. [2] for a z value around
0.4, and they correspond to the total number of individuals
being equal to 1024, 4096, and 16 384. The curve on the
left shows a scaling collapse log-log plot of all the data in
the three curves. The x coordinates are u � �n�Nf� and the
y coordinates are �nP0�n��uc11� with the f and c exponents
predicted from theory.
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one-half of that area is independent of A. Specifically, if
a species is known to be in area A, the probability that,
under bisection, it will be found in at least a specific one
of the two resulting subareas is denoted by a. It was
shown by Harte et al. [2] that this self-similarity postulate
leads to an algebraic species-area relationship with the
exponent

z � 2
log�a�
log�2�

. (4)

To obtain the distribution of the abundance of individuals
within species, Harte et al. derived a recursion relation for
Pi�n�, the probability that if a species is found in a patch
of area Ai , then it contains n individuals. The notion of
a smallest patch size, Am � A0�2m, where A0 is the total
area, was introduced [2] so that Pm�1� � 1; there is, on
average, just one individual of whatever species is present
in a given unit patch of this smallest size. (Of course,
not all species are found with equal probability in this
smallest size patch.) Furthermore, the mean total number
of individuals N0 � 2m, Pi�n� � 0 for n $ 2m2i 1 1
and

P
n Pi�n� � 1. One then obtains [2] the following

recursion relation:

Pi�n� � xPi11�n� 1 �1 2 x�
n21X
k�1

Pi11�n 2 k�Pi11�k� ,

(5)

where

x � 2�1 2 a� . (6)

We begin by noting that the total number of individuals
must be equal to the product of the number of species
and the average number of individuals per species. Thus
N0 � A0 must equal the product of Az

0 (the number of
species according to the species-area relationship) and �n�,
whose scale is set by N

f
0 , leading to the equation

f 1 z � 1 , (7)

a relationship that is valid even when the Harte model is
generalized to one in which a given census patch area is
partitioned into b subareas (b is equal to 2 in the original
model).

We now turn to an analysis of the recursion relation
[Eq. (5)]. We define a new variable Qi�n� 	 Pm2i�n�
and the associated generating function Ri�l� �P`

n�1 Qi�n�e2nl, with l $ 0, to recast Eq. (5) in
the form

Ri11�l� � xRi�l� 1 �1 2 x� �Ri�l��2, (8)

where Ri�0� � 1 (in order to satisfy the normalization
condition), whereas the condition in the smallest patch of
Q0�n� � dn,1 becomes R0�l� � e2l. The fixed points of
the above renormalization group equation for Ri�l� in the
physical interval between zero and 1 are zero, which is
an attractive fixed point and 1, which is repulsive. For a
given value of l, one has a specific initial condition, and
one obtains a renormalization group trajectory flowing
towards the attractive fixed point.
The scaling form for P0�n� postulated in Eq. (3) is
equivalent to

Qi�n� �
1
n

f

µ
n

2if

∂
, (9)

which leads to a scaling form for

Ri�l� � h�l2if� . (10)

The function h is related to the function f by the relation

h� y� �
Z `

0

dx
x

e2xyf�x� (11)

with the scaling form for Ri�l� holding in the limit of l

tending to zero, with i much greater than 1, so that l2if

is maintained at a fixed value. Using the scaling form
for Ri�l�, its recursion relation [Eq. (8)] may be recast in
the form

h�2fe� � xh�e� 1 �1 2 x� �h�e��2, (12)

where e � l2if.
We will proceed now to deduce the consequences

of Eq. (12) on the behavior of h for small and large
arguments. When e � 0, one obtains

h�0� � xh�0� 1 �1 2 x� �h�0��2, (13)

so that h�0� equals zero or 1. The value consistent
with R�l � 0� � 1 is the latter. Assuming that h�e� is
analytic in the vicinity of e � 0 and using Eq. (12), one
immediately finds that

2f � 2 2 x . (14)

Using Eqs. (4) and (6), Eq. (14) gives back the scaling
relationship of Eq. (7). When e tends to infinity in
Eq. (12), h reaches a fixed point, this time equal to zero.
Thus for very large e, h�e� tends to zero and Eq. (12)
simplifies to its linearized form

h�2fe� � xh�e� . (15)

This implies

h�e� � e2�11c�, (16)

with

x � 22f�11c�. (17)

This asymptotic behavior of the function h leads to the
function f�x�, for small argument, behaving as

f�x� � x�11c�. (18)

For the Harte model [2] (with only two partitions), there is
only one independent exponent and c 1 1 � 2�log�2 2

g�� log�g��, where g � 2f � 212z . The analytic pre-
dictions are nicely born out by numerical calculations
(Fig. 1). For a generalized Harte model with more than
two partitions, the exponent c depends not only on z but
also on the probability that a species is found in just one
of the partitions of the census patch area.
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Finally, we relate our scaling results to those presented
in Bramwell et al. [6]. These authors demonstrated
the scaling collapse of magnetic systems and turbulent
flow by plotting siPi�x� vs �x�si�, where Pi�x� is a
probability density function characterizing either system
at scale i and si as its standard deviation. To see the
connection of their finding to our Eq. (3), we first note
that the following recursion relation describes the variance
of the solution to Eq. (5):

s2
i � �2 2 x�s2

i11 1 �2 2 x�2�m212i�x�1 2 x� . (19)

This yields an exact expression for the variance of Pi�n�,

s2
i �

m2i21X
j�0

�2 2 x�j�2 2 x��m2i21�x�1 2 x� . (20)

From this solution, it follows that, for m 2 i ! `,

si

si11
! 2 2 x . (21)

In particular, for �2 2 x��m2i� much larger than 1,
�si�si11� 
 2 2 x. Combining Bramwell et al.’s [6]
scaling collapse law with Eq. (21) results in another form
of the recursion relation, again valid for �2 2 x�m2i much
larger than 1,

Pi�n� 
 �2 2 x�Pi21��2 2 x�n� . (22)

Casting the recursion formula (22) in terms of the
universal scaling function (3) yields the relationship
expressed in Eq. (14), 2 2 x � 2f; hence Eq. (3) is
equivalent to Bramwell et al.’s scaling collapse.

It is noteworthy that the shape of Bramwell et al.’s
universal probability distribution describing both turbulent
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power fluctuations and magnetic ordering is remarkably
similar to the solution of the recursion relation, Eq. (5),
derived by Harte et al. [2]. However, the physical
relationship between the variable log abundance and
either the rate of turbulent power fluctuation or magnetic
ordering in Bramwell et al. [6] remains unexplained.

In summary, we have shown that finite size scaling
techniques applied to ecology provide a powerful theo-
retical tool for predicting relationships among power-law
exponents, as well as a connection between scaling phe-
nomena in ecology and physics.
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