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When the 4-state or the 6-state protocol of quantum cryptography is carried out on a noisy quantum
channel, then the raw key has to be processed to reduce the information of a spy down to an arbitrarily
low value, providing Alice and Bob with a secret key. In principle, quantum algorithms as well
as classical algorithms can be used for this processing. A natural question is: Up to which error
rate on the raw key is a secret-key agreement at all possible? Under the assumption of incoherent
eavesdropping, we find that the quantum and classical limits are precisely the same: As long as Alice
and Bob share some entanglement, both quantum and classical protocols provide secret keys.

PACS numbers: 03.67.Dd, 03.65.Bz
Quantum cryptography lies at the intersection of two
of the major sciences of the twentieth century: quantum
mechanics and information theory. Moreover, due to the
intimate relation between quantum cryptography and quan-
tum nonlocality, another major scientific achievement of
this century, relativity, is not far away. This Letter con-
cerns the dialog between quantum physics and information
theory in the context of optimal eavesdropping on a quan-
tum channel and the corresponding secret-key agreement
that, in principle, both quantum and classical algorithms
provide. This analysis of the interplay of these comple-
mentary approaches reveals surprising connections.

To provide a secure communication, quantum cryptog-
raphy [1] exploits quantum correlations to establish secure
keys (which are then the basis for classical information-
based cryptosystems). Alice prepares a pair of qubits (i.e.,
a pair of spin 1

2 ) in a maximally entangled state, sends
one qubit to Bob, and keeps the other one. Then they
both measure their qubit in a basis chosen independently
at random within a set of two or three bases for the 4- and
6-state protocols, respectively. (Alice could also pre-
pare a qubit in a state compatible with one of the bases
and send it to Bob, but the protocol with qubit pairs is
equivalent and better suited for the purpose of this
Letter.) On a perfect channel, all errors are due to eaves-
dropping; hence, a protocol for secure-key agreement is
relatively straightforward. However, in practice the quan-
tum channel is noisy, and elaborated protocols which tol-
erate some errors are needed. These require as input an
upper bound on the information accessible to the eaves-
dropper, a bound set by the laws of quantum physics. A
natural question is as follows: Up to which error rate is
secure key agreement at all possible? This Letter presents
the answer to this question under the assumption of inco-
herent eavesdropping.

Below, we first review general incoherent eavesdrop-
ping and summarize recent results on secret-key agree-
ment by public discussion. Then, the cases that Bob has
more or less information than Eve are treated.
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By general incoherent eavesdropping we mean the
following. First, Eve lets each qubit sent by Alice to
Bob interact with independent ancillas each initially in the
state j0�. The dimension of the ancillas and the interaction
are arbitrary, except that the interaction is described by a
unitary operator U:

Uj"� ≠ j0� �
p
F j"� ≠ c" 1

p
D j#� ≠ f" , (1)

Uj#� ≠ j0� �
p
F j#� ≠ c# 1

p
D j"� ≠ f# , (2)

where the cj and fj are the normalized states of Eve’s
ancilla when Bob receives the qubit undisturbed and
disturbed, respectively. The former case happens with
probability F , called the fidelity, and the latter with
probability D , called the disturbance or, equivalently,
the quantum bit error rate (QBER). Next, Eve stores
her ancillas until she learns the bases used by Alice to
encode the qubits. Finally, she measures her ancillas one
after the other, using any measurement scheme compatible
with the laws of quantum physics. Clearly, if Eve
interacts only weakly with the qubits, then she disturbs
the channel only weakly, hence, the QBER is low, but
Eve gets little information. On the contrary, if the
interaction is strong, Eve gains more information, but the
QBER is larger. Optimal here means that, for any given
QBER, Eve chooses the qubit-ancilla interaction and her
measurement to maximize her information.

The state vectors cj and fj in (1) and (2) have to be
such that they define a unitary operator U. Moreover, we
choose them such that U has the same effect on all qubits
sent by Alice (all the Poincaré vectors are shrunk by the
same factor). Such eavesdropping strategies for which the
disturbance seen by Alice and Bob is the same for all
states are called symmetric. They simplify the analysis
considerably. It is important to note that one can assume
symmetric eavesdropping without loss of generality, as
proven in [2,3]. Indeed, Eve can make her strategy
look symmetric to Bob by applying arbitrary rotations
R to the qubit immediately before and R21 immediately
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after it interacts with her ancilla. As she knows which
rotation she applies, she does not lose information. From
Bob’s point of view, however, the arbitrary rotations make
the disturbance appear symmetric. From this symmetry
condition, one obtains the following relation for the
fidelity F [2–4]:

F �
1 1 �f" jf#�

2 2 �c" jc#� 1 �f" jf#�
. (3)

The explicit form of the cj and fj and Eve’s optimal
measurements are given in [2,3] for the 4-state protocol
(BB84) and in [4,5] for the 6-state protocol (note that
for the latter �f" jf#� � 0). This provides the joint
probability distribution PXYZ of the random variables X,
Y , and Z to which Alice, Bob, and Eve have access,
respectively. It turns out that Eve’s random variable is
composed of 2 bits Z � �Z1, Z2�, where Z1 � X © Y
�© � xor�, i.e., Z1 tells Eve whether Bob received
the qubit disturbed �Z1 � 1� or not �Z1 � 0� [this is a
consequence of the fact that the c and f states in (1)
and (2) generate orthogonal subspaces]. The probability
that Eve’s second bit indicates the correct value of Bob’s
bit depends on whether the qubit was disturbed or not:
Prob�Z2 � Y jX � Y � � d0 and Prob�Z2 � Y jX fi

Y � � d1 (note that for the 6-state protocol d1 � 1). The
relevant Shannon informations are then

IBob � 1 1 F log2�F � 1 �1 2 F � log2�1 2 F � , (4)

IEve � F �1 1 d0 log2�d0� 1 �1 2 d0� log2�1 2 d0��
1 �1 2 F � �1 1 d1 log2�d1�

1 �1 2 d1� log2�1 2 d1�� . (5)

For the 4-state protocol Eve’s Shannon information
is maximal when d0 � d1 � 1

2 1
p
F �1 2 F �. Let

us concentrate on the point where IBob � IEve, at
QBER0 � 1 2 F0 � �1 2 1�

p
2 ��2. For QBERs be-

low this threshold, Bob has more information than Eve,
while above QBER0 Bob has less information than Eve.
We shall see that in the latter case Alice and Bob can
still exploit their authenticated classical communication
channel to overcome their initial drawback. Note that the
noise corresponding to QBER0 in the 4-state protocol is
precisely the limit above which Bell inequality [6] can no
longer be violated [2,3,7], while for the 6-state protocol
it corresponds to the optimal universal quantum cloning
machine [8].

The situation that results when the 4-state or the
6-state protocol is used, and if all the parties obtain
classical random variables by carrying out measurements
after each bit sent, is a special case of the more general
scenario of secret-key agreement by public discussion
from common information described by Maurer [9].
In this setting, two parties Alice and Bob who are
willing to generate a secret key have access to repeated
independent realizations of (classical) random variables X
and Y , respectively, whereas an adversary Eve learns the
outcomes of a random variable Z. Let PXYZ be the joint
distribution of the three random variables. Additionally,
Alice and Bob are allowed to communicate over a
noiseless and authenticated, but otherwise completely
insecure, channel. In this situation, the secret-key rate
S�X; Y kZ� has been defined as the maximal rate at which
Alice and Bob can generate a secret key that is equal for
Alice and Bob with overwhelming probability and about
which Eve has only a negligible amount of information
(in terms of Shannon entropy). For a detailed description
of the general scenario and the secret-key rate as well as
for various bounds on s�X; Y kZ�, see [9–11].

A first result analyzes the case when Bob’s random
variable Y provides more (Shannon) information about
Alice’s X than Eve’s Z does (or vice versa): Then this
advantage can be exploited to generate a secret key:

S�X; Y kZ� $ max�I�X; Y � 2 I�X; Z�, I�Y ; X�
2 I�Y ; Z�	 . (6)

This bound follows from an earlier result by Csiszár and
Körner [12]. It guarantees the possibility of secret-key
agreement using error correction and (classical) privacy
amplification whenever Bob has more information on
Alice’s bit than Eve. It is somewhat surprising that
this bound is not tight, in particular, that secret-key
agreement is even possible when the right-hand side of (6)
vanishes or is negative. However, it was shown that the
positivity of the expression on the right-hand side of (6)
is a necessary condition for the possibility of secret-key
agreement by one-way communication: Whenever Alice
and Bob start in a disadvantageous situation compared
to Eve, then feedback is necessary. The corresponding
initial phase of the key-agreement protocol is then called
advantage distillation.

Let us come back to quantum cryptography and first
briefly apply the general scenario for secret-key agree-
ment to the case when Bob has more information than
Eve. This case is relatively simple since, before starting
the classical phase of the protocol, Bob has already an ad-
vantage over Eve. Hence, inequality (6) guarantees that a
positive secret-key rate can be achieved using only error
correction and privacy amplification. Actually, inequality
(6) provides even a lower bound on the achievable secret-
bit rate.

Next, we consider the case when Bob has less informa-
tion than Eve. This case may seem hopeless. However,
there are still two reasons to keep optimism. First, we
shall see that, for QBERs not too large, Alice’s and Bob’s
qubits are still entangled; hence, the technique of quan-
tum privacy amplification (QPA) [14] can be used. Next,
Alice and Bob can take advantage of the authenticity of
the public channel and carry out an advantage distillation
protocol. We shall successively analyze these two possi-
bilities and show that, despite their differences, the former
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processing quantum information while the second is en-
tirely classical, both can be applied up to precisely the
same maximum QBERmax.

The qubit sent by Alice to Bob is initially maximally
entangled with another qubit that stays in Alice’s hands.
Once Bob received his qubit, Alice and Bob qubits are in a
mixed state rAB. If rAB is separable, then the correlation
between Alice and Bob could be established by purely
local operations and classical (public) discussions; hence,
there is no way for Alice and Bob to base a secret key
on this correlation. If, however, rAB is entangled, then
it contains some quantum (i.e., nonclassical) correlations.
If Alice and Bob have many pairs of qubits, each in
an entangled state rAB, they can apply entanglement
distillation [13]: after some local action involving pairs
of qubit pairs and some public discussion, some qubit
pairs will be more entangled at the cost that some other
qubit pairs are destroyed. Repeated use of this protocol
provides Alice and Bob with qubit pairs arbitrarily close
to maximal entanglement, as would have been obtained
with a perfect channel. They can thus be used for
secret-key agreement; this is called quantum privacy
amplification [14].

According to the general incoherent eavesdropping
strategy [(1) and (2)] and assuming Alice prepares the
qubits in the singlet state, rAB takes the following form
(in the computational basis �j00�, j01�, j10�, j11�	):

rAB �
1
2

0
BBB@

D 0 0 2D cf

0 F 2F cc 0
0 2F cc F 0

2D cf 0 0 D

1
CCCA,

(7)

where cc � �c" jc#� and cf � �f" jf#�. Using the
Peres-Horodecki [15] separability condition, one finds
that rAB is entangled if and only if D . F cc and
F . D cf. Using the explicit relations among F , D ,
cc , and cf, one obtains the maximum QBERmax for
which rAB is entangled and thus QPA can be applied:

for the 4-state protocol:

QBERmax � 1 2
1
p

2

 30% , (8)

for the 6-state protocol: QBERmax �
1
3


 33% .

(9)

Note that these bounds are not only valid for QPA, but
more generally for any quantum algorithm. Indeed, if the
above bounds are violated, then Alice and Bob do not
share any entanglement; hence, their correlation could be
produced by public discussions.

We now discuss the case when Alice, Bob, and Eve
are left with classical random variables X, Y , and Z,
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respectively, and the mutual information Bob-Alice is
lower than the Eve-Alice one. Alice and Bob can then
not achieve a secret key using only error correction and
privacy amplification. Nevertheless, they can try to use
an advantage-distillation protocol. The idea is that Alice
uses her random variable X to send over the public
channel an N-bit block encoding a single bit C [16]:

XN © CN := �X1 © C, X2 © C, . . . , XN © C� . (10)

Bob then computes �XN © CN � © YN and (publicly)
accepts exactly if this block is equal to either �0, 0, . . . , 0�
or �1, 1, . . . , 1�, corresponding to C � 0 and C � 1,
respectively. In other words, Alice and Bob make use
of a repeat code of length N with only two code words
�0, 0, . . . , 0� and �1, 1, . . . , 1�. In this way, the probability
that Bob accepts erroneously a bit C goes down like DN .
Eve, on her side, has to use a majority vote to guess the bit
C. Hence, Bob’s information on C might be larger than
Eve’s information even in cases where Bob’s information
on XN is lower than Eve’s. The following theorem
defines the possibility for Alice and Bob to achieve secret-
key agreement using classical algorithms:

Theorem 1: Secret-key agreement is possible if and
only if

D

1 2 D
, 2

q
�1 2 d0�d0 (11)

holds. When applied to the 4- and 6-state quantum
cryptography protocols [2–4] this bound corresponds
exactly to conditions (8) and (9), respectively.

Recall that d0 is the probability that Eve guesses
correctly the value of a bit received undisturbed by Bob.

Proof of Theorem 1: First, we note that the condition
(11) is clearly necessary. Indeed, for a disturbance D
larger than this bound the correlations between Alice and
Bob correspond to a separable state rAB which can be
produced without any quantum channel, simply by public
discussion.

Next, we prove that the condition (11) is also suffi-
cient. When applying the advantage distillation protocol
described above, Bob’s conditional error probability bN

when guessing the bit sent by Alice, given that he accepts,
is

bN �
1

pa,N
DN #

µ
D

1 2 D

∂N

, (12)

where pa,N � DN 1 �1 2 D �N is the probability that
Bob accepts the received block. It is obvious that Eve’s
optimal strategy for guessing C is to compute the block
��C © X1� © Z1, . . . , �C © XN � © ZN � and guess C as 0
if at least half of the bits in this block are 0, and as 1
otherwise. Given that Bob correctly accepts, Eve’s error
probability when guessing the bit C with the optimal
strategy is lower bounded by 1

2 times the probability that
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she decodes to a block with N�2 bits 0 and the same
number of 1’s. Hence, we find that

gN $
1
2

µ
N

N�2

∂
�1 2 d0�N�2d

N�2
0

$
k

p
N

�2
p

�1 2 d0�d0 �N

holds for some constant k and for sufficiently large N by
using Stirling’s formula. Note that Eve’s error probability
given that Bob accepts is asymptotically equal to her error
probability given that Bob correctly accepts because Bob
accepts erroneously only with asymptotically vanishing
probability, given that he accepts.

Although it is not the adversary’s ultimate goal to guess
the bits C sent by Alice, it has been shown that the fact
that bN decreases exponentially faster than gN implies
that for sufficiently large N , Bob has more (Shannon)
information about the bit C than Eve (see, for example,
[10,11]). Hence, Alice and Bob have managed to generate
new random variables with the property that Bob obtains
more information about Alice’s random bit than Eve has.
Thus S�X; Y kZ� . 0 holds for this, hence, also for the
original, situation because of the bound (6).

In conclusion, we have proven that secret-key agree-
ment using either 4-state or 6-state quantum cryptog-
raphy, assuming general incoherent eavesdropping, is
possible if and only if Eve’s action is weak enough to
leave Alice’s and Bob’s qubits with some entanglement.
This complete-disentanglement limit is valid as well if
Alice and Bob use quantum information processing, like
quantum privacy amplification, as if they use classical
information processing, like advantage distillation [17].
In other words, as long as Alice and Bob share some
entanglement, they can use either a quantum protocol
or a classical protocol to extract a secret key from this
entanglement.

Quantum privacy amplification uses quantum
controlled-not gates, the basic building block of quantum
computers. The latter are usually thought as fundamen-
tally more efficient than classical computers. In the case
of quantum cryptography, our results demonstrate that the
same task can be achieved with both types of computers,
but it remains to be determined whether one method
is more efficient than the other. The case of coherent
eavesdropping also remains open.

From a practical point of view, it is crucial to know the
upper error rate compatible with secret-key agreement. It
is also important to have good estimates for the secret-key
rate S�X; Y kZ�. Indeed, in practice one has to optimize
a compromise between high raw bit rates and low error
rates [18].
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