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Three-Dimensional Magnetization Reversal Measurements in Nanoparticles

E. Bonet,1,* W. Wernsdorfer,1 B. Barbara,1 A. Benoı̂t,2 D. Mailly,3 and A. Thiaville4

1Laboratoire Louis Néel–CNRS, BP166, 38042 Grenoble, France
2CRTBT–CNRS, BP166, 38042 Grenoble, France

3L2M–CNRS, 196 avenue H. Ravera, 92220 Bagneux, France
4LPS–Université Paris-Sud, 91405 Orsay, France

(Received 1 July 1999)

The first three-dimensional switching field measurements of an individual nanometer-sized magnetic
particle are presented. The angular dependence of the switching field can be described by the model
of uniform rotation of magnetization. However, the anisotropy function proposed by Stoner and
Wohlfarth appears to be simplistic. In order to reproduce the measured switching fields, one has to take
into account higher order anisotropy terms. These terms are very important to understand dynamical
magnetization reversal properties in the classical and the quantum regimes.

PACS numbers: 75.50.Tt, 75.30.Gw, 75.60.–d
Since the late 1940s, nanometer-sized magnetic particles
have provoked continuous interest because studying their
properties has proved to be scientifically and technologi-
cally very challenging. The magnetization reversal of such
particles had been described more than 50 years ago by
Stoner and Wohlfarth [1] and Néel [2] in a very simple
theory: the uniform rotation model. Despite intense activi-
ties during the past few decades, the difficulties in prepar-
ing nanoparticles of good enough quality slowed down the
progress in this field. In the past few years, this has no
longer been the case because of the emergence of new
fabrication techniques which have allowed the fabrication
of small objects with the required structural and chemi-
cal qualities. In order to study these mesoscopic objects,
new techniques were developed such as magnetic force mi-
croscopy [3], magnetometry based on micro-Hall probes
[4,5], micro-SQUIDs [6], or magnetometry based on spin-
dependent tunneling with Coulomb blockade [7]. These
techniques lead to a new understanding of the magnetic
behavior of nanoparticles, which is very important for the
development of new fundamental theories of magnetism
and for modeling new magnetic materials for permanent
magnets or high density recording.

One of the important fundamental questions is whether
the model of Stoner and Wohlfarth, widely used in mag-
netism, provides a realistic description of the magneti-
zation reversal in a magnetic nanoparticle. In order to
demonstrate experimentally the uniform rotation mode,
the angular dependence of the magnetization reversal has
often been studied. First, it is important to choose a proper
system which does not present nonuniform magnetization
states. Then one has to carry out single particle measure-
ments in order to get rid of distributions of anisotropies.
Finally, the angular dependence of the switching field has
to be measured for all directions in the field space. In the
Stoner-Wohlfarth model, the graph of the angular depen-
dence in polar coordinates gives the well-known “Stoner-
Wohlfarth astroid.” In this Letter, we show that new
techniques of single particle measurements [3,5–7] and,
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in particular, the micro-SQUID technique [6] allow one to
test accurately the model of uniform rotation, not only in
a given plane but also in all directions of the field space.
These measurements give a geometrical representation of
the magnetic anisotropy of a given nanoparticle. We dem-
onstrate that the 2D Stoner-Wohlfarth model, which is
continuously used in both basic and applied research in
magnetism, constitutes an oversimplified approach which
should be overcome if one wants to understand deeply the
physical mechanisms of magnetization reversal. We show
that the generalization of the Stoner-Wohlfarth model, re-
cently proposed by Thiaville [8], is well suited to interpret
our experimental results.

The uniform rotation model is the simplest model de-
scribing the magnetization reversal of nanoparticles. It
assumes that the nanoparticle is small enough so that ex-
change interactions lead to uniform magnetization within
the particle. It can be written Msr, where Ms is the satu-
ration magnetization and r is a unit vector.

The only magnetic degrees of freedom of the particle are
those of the orientation of r. The dynamics of the magne-
tization is described using a potential energy V �r, H� de-
pending on the orientation of r and on the applied field H.
At zero applied field, this energy V0�r� is called anisotropy
energy. It has at least three sources: shape, surface, and
magnetocrystalline anisotropy.

Shape anisotropy comes from the anisotropy of the
demagnetizing field. It is in fact the remaining effect of
dipolar interaction when the magnetization vector Msr is
the only degree of freedom. Like dipolar interaction, shape
anisotropy is a quadratic form of the magnetization. It
is therefore highly symmetrical with respect to r, having
three symmetry planes orthogonal to each other.

Surface anisotropy is expected to be essentially of
second order and can therefore be treated as a contribution
to the shape anisotropy.

Nanometer-sized samples are often single crystalline.
Then, they have a well-defined magnetocrystalline aniso-
tropy arising from the coupling of the magnetization with
© 1999 The American Physical Society
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the crystal lattice. In contrast to shape anisotropy, magne-
tocrystalline anisotropy can be a function of r of any order.
It needs only to have the symmetries of the crystal. Since
these symmetries are in general different from those of the
shape anisotropy, the total resulting anisotropy symmetry
is very low: only central symmetry is granted.

An external magnetic field H adds a Zeeman contribu-
tion to the potential energy. Hence, the total energy is

V �r, H� � V0�r� 2 ym0Msr ? H ,

where y is the volume of the particle.
At zero kelvin, r is in a local minimum of V . If the

applied field H is continuously changed, V and the position
of the local minimum vary continuously as well. The ori-
entation r of magnetization follows the position of the
minimum. However, there are particular fields where the
minimum will disappear by merging with a saddle point.
When this happens, r varies discontinuously and jumps to
another minimum of V . This jump, called magnetization
reversal, is illustrated in Fig. 1. The corresponding fields
are called switching fields, and the locus in the field space
of all the switching fields is a 2D manifold called critical
surface. Knowing V0, the critical surface can be computed
easily by searching the fields at which a minimum of V
disappears [8].

The original Stoner-Wohlfarth model [1] is a special
case of the model above obtained by assuming the simplest
nontrivial form for magnetic anisotropy:

V0 � 2
K
2

y cos2Q ,

where K is a positive constant called magnetic anisotropy
constant, y is the particle volume, and Q is the angle be-
tween r and the easy axis of magnetization. By assuming
this axial anisotropy symmetry, the problem of magneti-
zation reversal becomes essentially a 2D problem. The
corresponding critical surface is the well-known Stoner-
Wohlfarth astroid when computed in two dimensions. To
get the whole 3D surface, one just has to rotate the astroid
around its easy axis, restoring the third dimension of the
problem.

FIG. 1. To the left, scheme of magnetization directions for
different fields. The magnetization varies continuously as the
field goes from H1 to H2, but it varies abruptly when H goes
from H2 to H3. To the right, the potential V �r� is shown
against an arbitrary coordinate of r for these three particular
fields.
The interesting point about this model is its simplicity.
It describes a magnetic particle using only two parameters:
the orientation of the easy axis with respect to the field and
the strength K of the anisotropy. The magnetization lies
in the plane defined by the anisotropy direction and the
field. Because of this simplicity, it has been widely used
for studying large assemblies of nanoparticles where one
needs to have few parameters in order to be able to get their
distribution by fitting experimental data. Since 3D astroid
measurements were not possible until now, there was no
need for more sophisticated models. Since this is possible
now, one has to go further than the usual 2D Stoner-
Wohlfarth model, especially because in real particles the
anisotropy is more complex and less symmetrical than in
this model, even if only the shape anisotropy is taken into
account.

By using the micro-SQUID technique [6], we measured
magnetization switching fields of barium ferrite particles:
BaFe1222xCoxTixO19 (x � 0.8), which we will call
BaFeO, in the size range of 10–20 nm [9,10]. In compari-
son to previous measurements [11,12], we improved the
micro-SQUID technique. Since a SQUID works exclu-
sively when the applied field is in the plane of its loop, we
were limited to measure only a cross section of the whole
critical surface. We overcame this problem by using a two-
step method. In the first step, the SQUID is switched off
and a field is applied in an arbitrary direction which may
or may not cause a magnetization switching. Then, the
SQUID is switched on and a second field is applied in the
plane of the SQUID to probe the resulting magnetization
state. This method allows us to scan the entire field space.

Figure 2 shows the entire critical surface measured at
50 mK on a BaFeO particle. This particle is about 20 nm
wide and has hexagonal symmetry. Although it has a
simple critical surface being similar to the original Stoner-
Wohlfarth “astroid,” it cannot be generated by the rota-
tion of a 2D astroid. However, taking into account shape
anisotropy and hexagonal crystalline anisotropy of BaFeO,
we are able to find a good agreement with a 3D Stoner-
Wohlfarth model (see Fig. 3). The anisotropy function is

2V0�r�
yMs

� 2Ar2
z 1 Br2

y 1 C�r2
x 0 1 r2

y0�2

1 D�r2
x0 1 r2

y0�3,

where �rx , ry , rz� are the coordinates of r in the coordinate
system that diagonalizes the quadratic part of V �r�, and
�rx0 , ry0 , rz0� are its coordinates in a coordinate system
where the z0 axis is the crystal sixfold axis. The values of
the anisotropy constants are A � 347.2 mT, B � 3.5 mT,
C � 29.5 mT, and D � 27.0 mT.

Notice that the magnetocrystalline part of the aniso-
tropy function exhibits rotational symmetry around z0. It
is possible to consider a less symmetrical term with only
hexagonal symmetry, but this seems to be useless since the
critical surface shows no evidence for such a symmetry.
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FIG. 2. Critical surface of a BaFeO nanoparticle as measured in three dimensions and seen from two orthogonal points of view.
While about 4000 points were measured on the surface, only a few hundred are represented on this figure.
Furthermore, the axes x, y, and z are not directly related to
the crystal axes, nor to the shape anisotropy axes because
both shape and crystalline anisotropies contribute to the
quadratic part of the total anisotropy. Therefore the axes
x, y, and z are the directions of the eigenvectors of the sum
of these two contributions.

As can be seen in Fig. 2 and from the values of the
anisotropy constants, the effective anisotropy of this par-
ticle is mainly quadratic. However, higher order terms
may play an important role in some circumstances, for
example, in the splitting of quantum energy levels. This
has to be taken into account when studying the possibility
of a quantum tunneling of the magnetization.
FIG. 3. Nine different cross sections of the critical surface showing the measured points (same data as from Fig. 2) and the fitted
curve. All these cross sections share a common y0 axis along the cusp of the astroid (shown vertically). Fields are given in mT.
The section planes are spaced 20± from one another.
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We have shown experimental results which can be
explained by the uniform rotation model for a classical
system at zero temperature and in three dimensions. To
our knowledge, this is the only model which gives a
simple explanation of experimentally obtained 3D Stoner-
Wohlfarth astroids. This kind of study can be theoretically
and experimentally extended in two directions. On the one
hand, one can consider a system at nonzero temperature
[11]. On the other hand, one may want to consider possible
quantum effects at such “macroscopic” dimensions [12].
Both extensions lead to the same kind of results. Namely,
the switching field becomes a stochastic variable and the
magnetization switching takes place before the energy
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barrier goes to zero. This can be due to thermal activation
or to quantum tunneling of the magnetization.

We have studied experimentally the dynamics of the
magnetization reversal at finite temperatures. A detailed
knowledge of the anisotropy function V0�r� is necessary to
interpret these experiments. This may also be the case for
particles assemblies. In general, V0�r� is supposed to be
the simple 2D Stoner-Wohlfarth potential. However, this
form of V0�r� is a very special and a highly symmetrical
case. Some results obtained with this model depend on
rotational symmetry, which does not exist in real systems.
Being able to measure the effective anisotropy function
of a given nanoparticle, we prove here that it is possible
(and we think, preferable) to start with arbitrary anisotropy
functions and determine them by fitting switching field
measurements.

One of the most exiting points about the classical theory
at nonzero temperature is that there is a relation between
the characteristic time t0 of the dynamics, the damping pa-
rameter in the dynamical equation of r, and the anisotropy
function V0�r� [13]. Knowing the effective damping pa-
rameter in small particles is very important for the research
on ultrafast magnetic recording systems. Since t0 can be
obtained from dynamical measurements, the knowledge of
the real anisotropy function opens the way to the experi-
mental determination of the damping parameter of single
nanoparticles, and also to test the different theories dealing
with intrawell fluctuations in both classical and quantum
regimes [14].
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