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Addition Spectra of Chaotic Quantum Dots: Interplay between Interactions and Geometry
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We investigate the influence of interactions and geometry on ground states of clean chaotic quantum
dots using the self-consistent Hartree-Fock method. We find two distinct regimes of interaction strength:
While capacitive energy fluctuations dx follow approximately a random matrix prediction for weak
interactions, there is a crossover to a regime where dx is strongly enhanced and scales roughly with
interaction strength. This enhancement is related to the rearrangement of charges into ordered states
near the quantum dot edge. This effect is nonuniversal depending on the shape and the size of the dot.
It may provide insight into recent experiments on statistics of Coulomb blockade peak spacings.
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The understanding of the interplay between many-body
interactions and chaos has evolved to a prominent field
in mesoscopic physics. This challenging issue brings to-
gether two seemingly disconnected fields, namely many-
particle physics and quantum chaos. Classically chaotic
independent-particle dynamics is found in mesoscopics
for both disordered systems due to scattering at impu-
rities and clean quantum dots, where the shape of the
confining potential can give rise to chaotic electron mo-
tion. While interaction effects in disordered systems have
been intensively studied in the recent past [1], accounts on
the interrelation between many-body effects and chaotic
dynamics in ballistic quantum dots are still rare (see,
e.g., Refs. [2,3]). The latter systems can be modeled by
quantum billiards which have served as prototypes to in-
vestigate quantum signatures of integrable and chaotic
single-particle dynamics [4]. Hence a generalization of
these quantum chaos concepts to interacting particles in
billiards appears natural. In this letter we approach this
problem within a self-consistent Hartree-Fock (SCHF) ap-
proximation after checking its validity by comparing with
exact diagonalization.

Our work was partly motivated by new measurements
of charge transport through quantum dots with variable
size and shape, which represent ideal tools to investigate
experimentally the interaction effects in confined chaotic
systems. If such a dot with N electrons and ground state
energy EN is only weakly coupled to external leads a
conductance peak is observed, upon tuning a gate voltage
connected to the dot, whenever the chemical potential
mN � EN 2 EN21 coincides with that of the leads. In
between the pronounced conductance peaks the current
through the dot is suppressed due to Coulomb blockade
[5]. The spacing between neighboring peaks as a function
of gate voltage is proportional to the capacitive energy

xN � EN11 2 2EN 1 EN21 . (1)

A number of recent experiments [6–9] showed that
fluctuations of xN resemble a Gaussian distribution, while
the assumption of a constant interaction (CI), which
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properly describes the mean peak spacing, combined
with random matrix theory (RMT), predicts a Wigner-
Dyson distribution. Two reasons have been proposed for
the Gaussian distribution, the scrambling of the single-
particle spectrum due to interactions [6,10–13] and the
deformation of the dot by changing the gate voltage [14].

However, it is not yet understood why the measured
peak spacing fluctuations, dx � ��x2

N � 2 �xN �2�1�2, sig-
nificantly vary between the different experiments: Pa-
tel et al. [8] found rather small fluctuations which are
comparable to the single-particle mean level spacing D.
They are in line with the RMT 1 Cl model predict-
ing dx � D�4�p 2 1�1�2 � 0.52D, and with RPA cal-
culations for weak interactions (high densities, rs , 1)
[15,16]. However, the other experiments yield large
fluctuations which scale with �xN � rather than with D:
dx � 0.06 2 0.15�xN � in Refs. [6,7,9]. E.g., in a recent
experiment [9], where the shape of the dot was not ex-
pected to be distorted by tuning the gate voltage, dx was
found to be 15 times larger than predicted by RMT.

Thus two main open questions arise: (i) What are
the responsible mechanisms for the large fluctuations, and
(ii) why do they show such a sample-dependent behavior,
assuming that the samples are chaotic?

Here we consider clean chaotic quantum dots and study
the interplay between the Coulomb interaction of the
electrons and the geometry of the dots. We propose a
mechanism for enhanced capacitive energy fluctuations
dx in chaotic structures and show that (i) interaction
drives the systems to a regime of large, nonuniversal
fluctuations by developing ordered charge states near
the edges, and (ii) the shape of the confinement is an
important factor for the formation of such states and hence
for the fluctuations.

To our knowledge, all related theoretical studies con-
sider interaction effects for disordered models [6,10–13],
apart from the work by Stopa [2], who suggested the oc-
currence of strongly scarred states as a mechanism for
enhanced fluctuations. Our calculations show that dx can
be enhanced in the absence of scarred states.
© 1999 The American Physical Society
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We model the quantum dots by a family of bil-
liards that arises from a deformation of the disk [17].
The quantum billiards have already been employed
as noninteracting models in the context of Coulomb
blockade [14,18]. Here they will serve as appropriate
tools to study interaction effects upon changing the
billiard geometry. The confinement is defined by a
hard-wall potential U satisfying U�u, y� � 0 inside
a domain D and U�u, y� � ` outside. Using com-
plex coordinates v � u 1 iy and z � x 1 iy, D
is defined by the conformal mapping [17] v�z� �
R�z 1 bz2 1 ceidz3���

p
1 1 2b2 1 3c2�; jzj , 1. The

real parameters b, c, and d determine the shape, and R
defines the dot size and area, A � pR2. For the deforma-
tions to be considered (right insets of Fig. 2) the classical
single-particle dynamics is predominantly chaotic
(described by a large Kolmogorov entropy for the
strongest deformation [18]), and we found that the
single-particle energies exhibit Wigner-Dyson statistics.

To include interactions we first calculate the single-
particle eigenfunctions fi and eigenenergies ei of a
deformed billiard. We then use them to construct
the Coulomb interaction matrix elements Vijkl �R

dr1 dr2 fi�r1�fj�r2�V �r1 2 r2�fk�r1�fl�r2� with
V �r� � e2�er , and the many-electron Hamiltonian

H �
X

i

eic
y
i ci 1

1
2

X

ijkl

Vijklc
y
i c

y
j clck . (2)

Here c
y
i �ci� creates (annihilates) the ith eigenstate of

the noninteracting Hamiltonian. In terms of energy units
h̄2��2m�R2�, Vijkl is proportional to the dimensionless
interaction strength, or system size, R�a�

B, where a�
B �

h̄2e�m�e2 is the effective Bohr radius. Equation (2) can
serve as a starting point for both the exact diagonalization
for few electrons [19] and SCHF calculations.

In this paper we focus on ground state properties for
many-electron quantum dots and employ SCHF system-
atically for systems up to 27 spinless electrons. The
SCHF allows us to calculate the ground state energies
even in the presence of two-electron density correlations
which are ignored in the RPA perturbation calculations
[15,16]. To check the validity of our SCHF results for
the capacitive energies xN , we first compare them with
exact diagonalization results for few electrons. As shown
in Fig. 1 the SCHF results are very accurate even for
strong interactions.

The SCHF results for xN do not show any visible
dependence on N but rather on the interaction strength
(system size) R�a�

B. Let us thus consider the mean
fluctuations dx, where the statistical average �· · ·� is
performed over N as in the experiments [6–9].

Our main results are summarized in Fig. 2. It shows
dx as a function of interaction strength for three different
geometries depicted as insets close to the curves. For
small size quantum dots, R�a�

B & 12, dx is close to the
RMT prediction. Most interestingly, we find for larger
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FIG. 1. Comparison of self-consistent Hartree-Fock (SCHF)
and exact diagonalization (EXACT) results of capacitive en-
ergies xN [Eq. (1)] as a function of interaction strength for
N � 3 (upper curve) and N � 4 (lower curve) for the billiard
geometry shown in the bottom right inset of Fig. 2.

R�a�
B a crossover to a regime where the capacitive energy

fluctuations increase roughly linearly with increasing
interaction strength. To our knowledge such clearcut
crossover behavior has not been found in any tight-
binding model for disordered systems. This indicates
that it could be a property of the charge distribution in
confined ballistic systems.

Using the standard definition of rs, namely, r2
s �

A��pNa�2
B �, we have rs � �R�a�

B��
p

N . Since we cal-
culate dx over a range 3 # N # 27 for a given value
of R�a�

B in Fig. 2, rs does not have a well-defined value
but is in the range �1�

p
27�R�a�

B # rs # �1�
p

3�R�a�
B.

Hence the crossover value of R�a�
B in Fig. 2 implies that
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FIG. 2. Fluctuations of capacitive energies dx � ��x2
N � 2

�xN �2�1�2 as a function of interaction strength for interacting
electrons in three chaotic billiards of different shapes shown
on the right (defined with d � 1.5, b � c � 0.12, 0.16, and
0.2 from above, see text). dx shows a clear crossover near
R�a�

B � 12 and increases with increasing R�a�
B in the strong

interaction regime. An analysis of the statistical error in
computing dx shows that it is of the order of the fluctuations
visible in the curves. Inset: the mean and rms value of
E2 � e

�N�
N12 2 e

�N�
N11 for the quantum dot in the bottom right

of the inset. Note that, for larger interactions, �E2� fi D.
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dx retains its RMT value up to rs � 2 which is consis-
tent with the RPA approach of Ref. [15].

In the following we discuss the mechanism responsible
for the crossover to enhanced fluctuations dx. To this end
it proves convenient to decompose xN11 as [15]

xN11 � �e�N11�
N12 2 e

�N�
N12	 1 �e�N�

N12 2 e
�N�
N11	 
 E1 1 E2 .

(3)

Here, e
�i�
j denotes the jth eigenvalue of the SCHF Hamil-

tonian with i electrons. Quantitatively, Eq. (3), which re-
lies on Koopmans’ approximation, does not give the same
value as dx in Fig. 2. However, Eq. (3) shows the same
qualitative behavior with the same crossover point but
slightly larger slope than in the SCHF case (Fig. 2).

The quantity E1 in Eq. (3), which describes the inter-
action energy between the electrons in �N 1 1�th and
�N 1 2�th states, has been considered in Ref. [15]. E2 is
the energy difference between two adjacent single-particle
levels of the same Hamiltonian. In the RPA approach
[15], it was claimed that �E2� is given by D and its fluc-
tuations dE2 follow the RMT value �0.52D. As dis-
played in the left inset of Fig. 2 our calculations show
that this seems to be true for R�a�

B & 12, which includes
the regime rs , 1, where RPA is reliable. However,
�E2��D grows as the system size increases, and dE2�D

and dE2��E2� no longer follow the RMT prediction for
R�a�

B * 12.
The similarity of the crossover behavior of dx and

dE2 in Fig. 2 suggests that an analysis of E2 proves
appropriate to understand the enhanced fluctuations dx.

What happens in the regime R�a�
B * 12? To answer

this question we present in Fig. 3 the evolution of unoccu-
pied SCHF single-particle levels e

�N�
n , n � N 1 1, N 1

2, . . . with increasing interaction for a few representative
values of N . We find that the enhancement of mean and
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FIG. 3. Unoccupied SCHF levels e�N�
n , n � N 1 1, N 1

2, . . . , as a function of interaction strength for a chaotic
quantum dot (bottom right of inset of Fig. 2) with N � 7,
11, 16, and 24 electrons. Note the sudden jumps in the level
spacings E2 between the lowest two adjacent levels which are
caused by abrupt changes in the mean-field potential. For
clarity, the levels in each panel are shifted by an amount
a�N� 1 b�N�R�a�

B. The energy units are h̄2�2m�R2.
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rms values of E2 � �e�N�
N12 2 e

�N�
N11� is accompanied by

the appearance of sudden jumps of the single-particle lev-
els as marked by vertical arrows in Fig. 3. (Note, how-
ever, that the energy levels do not show for all values of N
such jumps in the R�a�

B range considered, e.g., N � 16.)
The abrupt changes in the SCHF single-particle ener-

gies go along with a rearrangement of the corresponding
wave functions, as shown in Figs. 4(a) and 4(b). This in-
dicates a change in the total charge densities and thereby
in the underlying mean-field potential. The two lower left
(right) panels in Fig. 4 depict the total charge densities for
interaction strength R�a�

B � 5 (15) for two selected, rep-
resentative N . A systematic analysis of a large number of
geometries and particle numbers allowed us to extract two
common trends visualized in the figure.

(i) With growing system size the electrons tend to be
localized near the edge of the dot. For R�a�

B * 12 the
charges are reorganized in an ordered structure similar to
a one-dimensional crystal or a charge-density-wave state.

(ii) An abrupt change in the mean-field potential for
fixed N occurs when an electron from the inner region of
the dot moves into a state close to the edge.

Let us discuss the connection to the increase in �E2�
and dE2. Electrons in states extending over the whole
dot for small R�a�

B move with increasing interaction
to the edge due to the long-range Coulomb repulsion.
When the states near the edge are fully occupied [see,
e.g., Fig. 4(d)] the corresponding mean field reduces the
accessible space for the next electron above the Fermi
level [crossover from 4(a) to 4(b)]. The reduced effective
size of the dot gives rise to an enhanced level spacing
�E2� which is accompanied by enhanced fluctuations.

(a)                                      (b)                                       

(c)                               N=7 (d)                                  N=7

(e)                              N=11 (f)                               N=11

FIG. 4. Charge reordering with increasing interaction for a
chaotic dot (bottom right inset of Fig. 2); R�a�

B � 5 (15) in left
(right) panels. Panels (a) and (b) show the probability density
of the first unoccupied SCHF single-particle state n � 8, N �
7 (lowest curve in upper left panel, Fig. 3). In (c)– (f ) the total
charge densities for N � 7, 11 are displayed.
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Note that dE2��E2� also deviates from the RMT value
of �0.52. This indicates that even for a chaotic geometry
the SCHF single-particle states near the Fermi level in
the strong interaction regime no longer follow RMT due
to charge rearrangement near the edge.

The reorganized charge states at the edge differ from
a two-dimensional Wigner crystal where the electrons are
localized due to electron correlation energy [20].

One can distinguish two types of ordered states: For
smaller N a phase which might be called a “crystal chain”
evolves where the electrons are localized near the edge
with clear spatial separation [see, e.g., Fig. 4(d)]. Because
of quantum fluctuations of such a 1D crystal lattice this
phase will be bounded from above by some critical electron
number Nc. Since the minimum distance between the
electrons should be larger than a Fermi wavelength lF ,
the maximum number of electrons which can reside at
the edge is �Lp�lF , where Lp is the perimeter of the
dot. Since in the crystal chain state all electrons are at
the edge, Nc can be estimated as Nc � L2

p�A, where we
used lF � R�

p
N . For the dot geometries used we find

Nc to be of the order of 10. This rough estimation is in line
with our numerical results where for N � 7 all electrons
are near the edge, whereas for N � 11 only 10 electrons
seem close to the edge with one electron near the center of
the dot [see Fig. 4(f)].

For the larger electron number N . Nc, as in Fig. 4(f),
the charge density exhibits a modulation close to the
edge rather than well-separated charges. Such ordered,
charge-density-wave-like structures [21] persist up to high
electron numbers. We still found these states for N � 40,
the highest N considered. They play the same role for the
enhancement of dx (see, e.g., Fig. 3 for N � 24) as the
crystal-type states do for N , Nc.

A few further remarks are due:
(i) A strongly deformed quantum dot where part of the

boundary is concave [22] (insets of Fig. 2), renders the
formation of edge states more difficult than the dot with
a shape close to a disk due to the interplay between the
long-range interaction and geometry. This is the reason
why the fluctuations dx are the largest in the latter
case and turn out to be system dependent, even if the
noninteracting geometries all exhibit chaotic dynamics.

(ii) The accumulation of charge near the edge alone
is not sufficient to produce enhanced fluctuations dx, as
visible in Figs. 4(c) and 4(e) for weakly interacting dots
�R�a�

B � 5�. This weak interacting case, where dx is
still similar to the RMT value, can be understood within
the RPA approach of Ref. [15], where the corresponding
contribution to dx was shown to be of the order of D

or smaller, independent of the interaction strength. The
formation of ordered states, which no longer follow RMT
predictions, is necessary to generate enhanced fluctuations.

(iii) The shape dependence of the capacitive energy
fluctuations found within our model, which does not in-
clude effects, e.g., from the dot surroundings, temperature,
and spin, may be considered as one possible mechanism
which can lead to the different widths in the peak spacing
distributions of the various experiments [6–9].

An experimental observation of the interaction-
dependent crossover of dx would be particularly
interesting. For GaAs samples with a�

B � 10 nm,
the crossover may appear for a system size close to
0.1 mm. Recent experiments [23] on small quantum
dots without spatial symmetry may be a good testing
ground.

In conclusion, we considered interaction effects in clean
chaotic quantum dots. We propose as a mechanism for
enhanced capacitive energy fluctuations, the formation of
ordered charge states near the quantum dot edges. In
the regime where the ordered states are developed the
fluctuations are geometry dependent, even for chaotic
systems.

We thank R. Berkovits, H. Castella, A. Cohen,
Y. Gefen, S. Kettemann, A. D. Mirlin, G. Montambaux,
and J.-L. Pichard for helpful discussions. K. H. A.
thanks M. Takahashi for useful comments on numerical
calculations.

[1] For a recent collection of papers see, e.g., special edition
of Ann. Phys. (Leipzig) 7 (5-6) (1998).

[2] M. Stopa, Physica (Amsterdam) 251B, 228 (1998).
[3] D. Ullmo, H. U. Baranger, K. Richter, F. von Oppen, and

R. A. Jalabert, Phys. Rev. Lett. 80, 895 (1998).
[4] Chaos and Quantum Physics, edited by M. J. Giannoni,

A. Voros, and J. Zinn-Justin (North-Holland, New York,
1991).

[5] M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992).
[6] U. Sivan et al., Phys. Rev. Lett. 77, 1123 (1996).
[7] F. Simmel et al., Europhys. Lett. 38, 123 (1997).
[8] S. R. Patel et al., Phys. Rev. Lett. 80, 4522 (1998).
[9] F. Simmel et al., Phys. Rev. B 59, R10 441 (1999).

[10] A. Cohen et al., Phys. Rev. B 60, 2536 (1999).
[11] S. Levit and D. Orgad, Phys. Rev. B 60, 5549 (1999).
[12] L. Bonci and R. Berkovits, cond-mat /9901332.
[13] P. N. Walker et al., Phys. Rev. Lett. 82, 5329 (1999).
[14] R. O. Vallejos et al., Phys. Rev. Lett. 81, 677 (1998).
[15] Y. M. Blanter et al.,Phys. Rev. Lett. 78, 2449 (1997).
[16] R. Berkovits and B. L. Altshuler, Phys. Rev. B 55, 5297

(1997).
[17] M. V. Berry and M. Robnik, J. Phys. A 19, 649 (1986).
[18] H. Bruus and A. D. Stone, Phys. Rev. B 50, 18 275 (1994).
[19] K.-H. Ahn and K. Richter, Physica E (to be published);

Ann. Physik (Leipzig) (to be published).
[20] A. A. Koulakov and B. I. Shklovskii, Phys. Rev. B 57,

2352 (1998).
[21] K. Hirose and N. S. Wingreen, Phys. Rev. B 59, 4604

(1999).
[22] The shape sensitivity of the fluctuations dx is not specific

to the “kink” in the structure shown in the bottom right
inset of Fig. 2, but also exists in deformed geometries
with smooth confinement.

[23] D. G. Austing et. al., cond-mat /9905135; S. Tarucha
(private communication).
4147


