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Stability of Straight Delamination Blisters
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We consider the buckle-driven delamination of biaxially compressed thin films. Telephone-cord-like
patterns observed in experiments are explained as a result of the buckling behavior of the film. We
perform a stability analysis of a straight blister. A mechanism of instability causing undulations in an
advancing finger of delamination is pointed out, which we claim to be the basic phenomenon explaining
the zigzag pattern. We predict a transition to a varicose (unobserved as yet) pattern at low Poisson
ratios.

PACS numbers: 68.55.−a, 46.32.+x
The elasticity of thin plates has been investigated by
Föppl and von Kármán (FvK) early in this century.
Because of the intricate nature of the equations, however,
there remain many unsolved theoretical questions in this
area. For example, thin films delamination is still poorly
understood, although such films are widely used in the
industry (e.g., insulating layers in microelectronics). A
thin coated film is often obtained by vapor deposition
on a substrate; if its thermal expansion coefficient is
smaller than that of the substrate, the film acquires a
residual biaxial compression upon cooling. In this case,
a competition between this compression and the film-
substrate cohesion can result in the partial delamination of
the coating: in some region, the film lifts off the substrate,
and forms a blister. Delamination patterns looking like
telephone cords have been observed in a vast variety of
films [1], and have recently been reproduced in computer
simulations [2]. The configuration of the film in the
delaminated region is an elongated tunnel with undulating
edges, behind a propagating tip.

Although the first observations of telephone-cord-like
patterns go back to the early 1960’s [3], a satisfactory ex-
planation for the origin of the undulations is still lacking.
Recently, Gioia and Ortiz [4] have proposed a model ca-
pable of replicating the telephone-cord morphology; how-
ever, their approach neglects important, if not essential,
aspects of thin film mechanics (in-plane displacements of
the film are discarded), and does not explain the origin
of the wrinkles. Yu et al. [5] have studied the telephone-
cord-like patterns, overlooking the boundary conditions at
the edge of the film, while these are known to be essential
for the selection of the buckling patterns [6].

We explain these wrinkles from the mechanical prop-
erties of the film, and show that all aspects of thin film
mechanics (in-plane displacements, lateral boundary con-
ditions) are important for the understanding of these pat-
terns. We start from the only elongated pattern that could
receive an exact analytical treatment, the straight-sided
blister [7], also called the “Euler column.” When the Eu-
ler column is formed, the buckling of the film mostly re-
leases the transversal stress. Prior to delamination, the
initial compression of the film was biaxial and isotropic; a
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large longitudinal compression therefore remains present
in the Euler column. We perform a linear stability analy-
sis of the Euler column, taking into account this longitu-
dinal compression. To do this, we use the FvK equations
for the film. We find that, for relatively small values of
the compression, the column becomes unstable, as it un-
dergoes a secondary buckling in the longitudinal direction.

In the delaminated region, the shape of the thin film is
found by solving the FvK equations for plates. Let z �x, y�
be the vertical displacement of the film—for a simple
description, we shall assume that the original plane �x, y�
of the film is horizontal, gravity having no effect. The
equations of mechanical equilibrium in the plane tangent
to the film allow one to define the Airy potential, x�x, y�.
The tangential components of the stress derive from
it: sxx � ≠yyx , syy � ≠xxx , sxy � 2≠xyx . The FvK
equations are two coupled nonlinear partial differential
equations in z and x [8]:
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where s0 . 0 is the initial biaxial compression of the
film, D � Eh3��12�1 2 n2�� its bending rigidity, E is the
Young’s modulus, n is the Poisson ratio, h is the thick-
ness of the film, and �x , z � � �≠2x�≠y2� �≠2z�≠x2� 1

�≠2x�≠x2� �≠2z�≠y2� 2 2�≠2x�≠x≠y� �≠2z�≠x≠y�. The
horizontal components of the displacement have been
eliminated from these equations, but we shall need them
to express boundary conditions later; they can be recov-
ered from the following relations [8], which are com-
patible by (1a):
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A solution of the FvK equations representing a straight-
sided blister of width 2b is known; it is sketched in Fig. 1.
It is found by solving the Eqs. (1), assuming cylindrical
symmetry: ≠yz � ≠ysab � 0. As the substrate is much
thicker than the film, clamped boundary conditions must
be imposed at the edge of the blister:

ux � uy � 0, z � zx � 0 at x � 6b . (3)

The conditions ux�6b, y� � uy�6b, y� � 0 are to be
expressed using (2). If the initial compression is larger
than the critical value sE

c � �p2D���b2h�, then there
exists a buckled solution, the Euler column. It is defined
by [7]:

z E�x, y� � z E
m

1 1 cos px
b

2
, z E

m �
2 h
p

3

µ
s0

sE
c

2 1

∂1�2

.

(4)

This solution has no Gaussian curvature, which makes the
FvK equations linear [the second term in Eq. (1a) van-
ishes]. Nonlinearities arise due to the boundary condi-
tions only. This explains that an analytical solution can
be found.

The compression in the column is uniform, and has
the value sxx � 2sE

c , syy � 2��1 2 n�s0 1 n sE
c �,

sxy � 0. In comparison with the unbuckled state, all the
components of the stress have decreased in magnitude.
However, this buckling releases the initial biaxial com-
pression in the transversal direction only: typical initial
strains in the film can be as high as a few percent [9],
so that compressions in the film may be far beyond the
buckling threshold (s0 ¿ sE

c ). As a result, an appre-
ciable longitudinal compression syy � 2�1 2 n�s0 re-
mains present in the film after the Euler buckling. This
residual stress may induce a secondary buckling of the
Euler column, addressed by studying the linear stability
of the straight-sided blister.

Let �ẑ , x̂� be a small perturbation in the configura-
tion of the film near the Euler solution (4). We use
dimensionless variables: ŝ0 � s0�sE

c , �x̂, ŷ� � �x, y�� b,
ẑ � �z 2 z E���b �sE

c �E�1�2�, x̂ � �x 2 xE���2p�1 2

n2�1�2�ŝ0 2 1�1�2 sE
c � b2��. The Euler column being in-

variant by translation, one considers perturbations �ẑ , x̂�
that are harmonic in the y direction. Let l be the longitudi-

FIG. 1. The Euler column, solution of the FvK equations
above the critical initial compression s0 . sE

c .
nal wavelength, l̂ � l�b, and q̂ � 2p�l̂ the wave vector:
x̂�x̂, ŷ� � x̂q̂�x̂� cos�q̂ŷ�, ẑ �x̂, ŷ� � ẑq̂�x̂� cos�q̂ŷ�. For a
mode of given wave vector, q̂, the linearized Eqs. (1) yield
two coupled ordinary linear differential equations of order
4 for zq̂�x̂� and xq̂�x̂�:
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where f �n� � dnf�dxn. When linearized, Eqs. (3) ex-
pressed using Eqs. (2) yield eight boundary conditions:

at x̂ � 61, ẑq̂ � ẑ 0
q̂ � 0 ,

x̂ 00
q̂ 1 q̂2nx̂q̂ 1 x̂
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q̂ � 0 .
(6)

Remarkably, any small parameter has been eliminated
in Eqs. (5) and (6). Only n and ŝ0 remain, which are
both of order unity. This may look surprising at first:
the mechanics of thin films and other elastic plates is
ruled to a large extent by a small parameter, h�b in
the present case. This small parameter makes the film
much easier to bend than to stretch. The easy formation
of local singularities in elastic films, such as d-cones
[10] or ridges [11], follows from the smallness of this
parameter. So, how could we get rid of this small number
if it is so essential to the mechanics of thin films? The
answer is that, in contrast to recent works on elastic plates,
we are considering a thin film submitted to tangential
stretching (along the edge of the blister, the longitudinal
compression s0 fi 0 is transmitted to the film). As a
result, the extensional contribution to the elastic energy is
always present (the instability investigated below results
from a competition between bending and stretching).

A shooting method can be used to isolate numerically
the solutions of Eqs. (5) satisfying the boundary condi-
tions (6). They correspond to the marginally stable con-
figurations of the Euler column. For each value of n,
this yields the diagram of linear stability of the Euler col-
umn in the �l̂, ŝ0� plane, as in Fig. 2. The superscript “S”
stands for “secondary” buckling. Because the Euler col-
umn is symmetric under x $ �2x�, the marginal modes
that are symmetric, or antisymmetric in the x direction,
have been sought independently; hence, the two branches,
S1 (symmetric) and S2 (antisymmetric), on the diagram.

For every value of n, the most unstable symmetric
and antisymmetric mode can be located on the diagram:
let sS6

c �n� and lS6�n� be the corresponding critical ini-
tial compression, and wavelength. In Fig. 3, these quan-
tities have been plotted versus n. For s0 . sS6

c �n�,
the Euler column buckles under the residual longitudinal
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FIG. 2. Diagram of linear stability of the Euler column: no
buckling (NB), linearly stable Euler column (LSEC), unstable
Euler column by secondary antisymmetric buckling (S2), or
secondary symmetric buckling (S1).

compression. Typically, the dimensionless buckling pa-
rameter �s0�sE

c � lies in the range 25–75 in experi-
ments. This estimate has been obtained from Eq. (4), us-
ing values of h 	 200 nm and z E

m 	 1.5 mm provided
in Ref. [9]. Comparison with sS

c �sE
c � 6.5 in Fig. 3

shows that the Euler column in unstable under typical ex-
perimental conditions; this explains why straight tunnels
are very seldom observed.

For n , nc, the most unstable mode is symmetric,
while for n . nc it is antisymmetric. The number nc

can be determined numerically as the value at which
the curves sS1

c �n� and sS2
c �n� intersect in Fig. 3. As

these curves do not depend on any parameter other
than n, its value is universal: nc � 0.255 6 0.001. The
configuration of the film after longitudinal buckling is
represented in Fig. 4. The symmetric buckling (S1)
involves vertical undulations of the Euler column, while
the antisymmetric one (S2) looks more like a transverse
periodic deformation of the column. The selection of the

FIG. 3. Critical compression, sS
c , and wavelength, lS , of the

mode destabilizing the Euler column, by symmetric (S1) or
antisymmetric (S2) secondary buckling. Dependence on the
Poisson ratio of the film, n is plotted.
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symmetric versus antisymmetric pattern is understood as
follows. The density of stretching elastic energy in a plate
[8],

Es �
E

1 2 n2 �u2
xx 1 u2

yy 1 2nuxxuyy 1 2�1 2 n� u2
xy� ,

shows that the relative energetic cost of shear (uxy term)
versus compression (uxx and uyy terms) increases as n

decreases. This explains that the symmetric secondary
buckling, which involves less shear than the antisymmet-
ric one, is obtained at lower values of n.

So far, the blister had imposed fixed, straight edges,
and advance of the crack between film and substrate has
not been discussed. In this paragraph, we consider the
lateral growth of the preexisting, infinitely long, Euler
column. As long as the edges of the blister remain
straight and parallel, the spread of this column can
be easily incorporated in the preceding analysis. The
prediction of the width of the column, b, as a function
of the initial compression, s0, relies on a propagation
criterion for the interface crack, and is not discussed
in this Letter; we shall merely mention that cracking a
unit area of the interface in mode II (shearing) requires
more energy than in mode I (opening), a fact which
seems essential to explain the stability of the column
[12,13]. The only effect of the increase of b is to
lower progressively sE

c ~ b22. As shown above, the
ratio sS

c �sE
c depends only on n and not on b, so that

FIG. 4. Secondary buckling of the Euler column under the
effect of the residual longitudinal compression (amplitude of the
deflection is arbitrary). When (a) n � 0.3 the most unstable
mode is antisymmetric (S2), while (b) for n � 0.2, it is
symmetric (S1). Instability of the delamination front caused
by this secondary buckling has been represented by the lateral
arrows, leading to delamination patterns in the insets.



VOLUME 83, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 15 NOVEMBER 1999
sS
c ~ b22 also decreases. For a given initial compression

s0, there exists a critical width of the column where
sS

c becomes smaller than s0, and the column buckles
longitudinally. The loading on the delamination front is
then no longer uniform. As shown in Fig. 4, portions
of the delamination front become unstable: lateral arrows
have been drawn, with a length proportional to the
increase of G caused by the secondary buckling, where
G is the energy release rate [14] along the film-substrate
crack. Above this critical width, the sides of the blister
cannot remain straight, and a tunnel with wavy edges is
formed. The symmetry of the marginal modes suggests
that these edges remain parallel if n . nc, and are
mirror symmetric if n , nc, as shown in the insets. The
increase of s0 has exactly the same effects as that of
b, as the dimensionless buckling parameter has the form
s0�sS

c ~ s0 b2. Destabilization of the Euler column can
result from the lateral growth of the column (increase
of b), from the increase of s0, or both. This picture
is strongly supported by an experimental observation:
when a sample with a preexisting, infinite, straight-sided
blister is cooled down, the straight edges become unstable,
leading to a telephone-cord-like morphology [15] (the
cooling increases s0).

In most experiments, telephone-cord blisters do not
result from the destabilization of a preexisting, infinite,
straight blister: they wave as they spread forward. The
advance of a finger of delamination is a very difficult
problem, because solutions to the FvK equations are
not available, except for very simple geometries of the
boundary, and the edge of the blister is not even known
in advance. However, the results derived above suggest a
simple mechanism of instability affecting the propagation
of a semi-infinite finger of delamination, leading to
undulations; by finger, we mean an elongated, straight
blister. Consider a film with a Poisson ratio n . nc (for
most films used in experiments, n is very close to 0.3,
which is indeed larger than nc). For typical experimental
widths of blisters and initial compressions, s0 ¿ sE

c , as
noted above. Therefore, the portion of the blister well
behind the tip is a Euler column which shall undergo an
antisymmetric longitudinal buckling. The undulations are
transmitted to the tip via the elasticity of the film. The
x $ �2x� symmetry at the tip is broken, which prevents
straight propagation (see Fig. 5). This generically leads to
undulations in the path of the blister [16]. This approach
suggests that the wavelength of the pattern shall be close
to the natural longitudinal length scale, lS2 � 1.9b. In
experiments, the width, 2b, and the wavelength of the
telephone cords are indeed comparable [1].

In conclusion, the present approach demonstrates that
the undulations in the patterns of delamination permit an
optimal release of the elastic energy stored in the film.
This interpretation simply relies on the elastic properties
of the film, which is consistent with the fact that these
patterns have been observed in a variety of experimental
FIG. 5. A mechanism of instability leading to undulations in
a finger of delamination: longitudinal buckling in the tail of
the blister breaks the symmetry at the tip, and favors oblique
propagation.

conditions. Analytical investigations are limited to a
weakly nonlinear regime (s0 	 sS

c ), while experimental
blisters are in fact in a fully nonlinear regime (s0 ¿ sS

c ).
The value of nc, which selects the antisymmetric, versus
symmetric, pattern shall be affected. Experiments using
macroscopic plates are being conducted to explore this
fully nonlinear regime.
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