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The behavior of a phase separating binary mixture in uniform shear flow is investigated by numerical
simulations and in a renormalization group approach. Results show the simultaneous existence of
domains of two characteristic scales. Stretching and cooperative ruptures of the network produce a
rich interplay where the recurrent prevalence of thick and thin domains determines log-time periodic
oscillations. A power-law growth R(¢) ~ t* of the average domain size, with @« = 4/3 and « = 1/3
in the flow and shear direction, respectively, is shown to be obeyed.
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The application of a shear flow to a disordered binary
mixture quenched into a coexistence region greatly affects
the phase-separation process[1]. A large anisotropy isob-
served in typical patterns of domains which appear greatly
elongated in the direction of the flow [2]. This behav-
ior has consequences for the rheological properties of the
mixture. A rapid strain-induced thickening followed by a
gradual thinning regime is observed [3]. Various numeri-
cal simulations confirm these observations [4—6]. These
studies, however, were carried out on rather small sys
tems so that an accurate resolution of their spatial prop-
erties, which is usually inferred from the knowledge of the
structure factor, is not available yet. A different theoreti-
cal approach has been considered in [7], where the phase-
separation kinetics has been studied in a time-dependent
Ginzburg-Landau model where nonlinear terms are ac-
counted for in a self-consistent approximation, also known
as large-N limit. Within this approach the existence of
a scaling regime characterized by an anisotropic power-
law growth of the average size of domains was estab-
lished. The segregation process, however, cannot be fully
described by this technique because interfaces are absent
for large N [8].

In this Letter the ordering process is investigated by
numerical simulation of large scale systems and the
structure factor is then computed at a fine level of
resolution. We undercover a much richer scenario than
what is usualy realized, characterized by the simultaneous
existence of two length scales for the thickness of the
growing domains. The competition between these scales
produces an oscillatory phenomenon due to the cyclical
prevalence of one of the two lengths. The scaling
properties of the kinetics are investigated also in a
renormalization group (RG) approach where a power-
law growth R(r) ~ t* of the average domain size, with
a =4/3 and o = 1/3 in the flow direction and the shear
direction, respectively, is obtained.
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In the following we consider a binary mixture in shear
flow described by a model with a simple coupling be-
tween a diffusive field ¢, representing the concentration
difference between the two components of the mixture,
and a shearing motion. This approach neglects hydrody-
namic effects which generaly play an important role in
fluid mixtures. For weakly sheared polymer blends with
large polymerization index and similar mechanical prop-
erties of the two species, however, the present model is
expected to be satisfactory in a preasymptotic time do-
main when velocity fluctuations are small [8].

The fluid is described by the Langevin equation
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The equilibrium free energy can be chosen as
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where b, k > 0, and a < 0 arein the ordered phase. v is
an external velocity field describing plane shear flow [1]
with profile o = yyé,, where y is the shear rate and ¢,
is the unit vector in the x direction [9]. 7 is a Gaussian
white noise, representing thermal fluctuations, with mean
zero and correlation (n(7,t)n(#',t")) = —2TTV?8(r —
#)8(t — t'), where I' is a mobility coefficient, T is the
temperature of the fluid, and {...) denotes the ensemble
average.

Equation (1) has been simulated in d = 2 by a first-
order Euler discretization scheme. Periodic boundary con-
ditions have been used in the flow direction; in the y
direction we adopt the Lees-Edwards boundary condi-
tions used in other contexts for simulation of shear flow
[10]: the point at (x,y) is identified with the point at
(x + yLAt,y + L), where L isthe size of the lattice and
Ar isthetime discretization interval [11]. Theinitial con-
figuration of ¢ is a high temperature disordered state and
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the evolution is studied with ¢ < 0. Parametrization in-
variance of (1) allows[12] onetosetI' = |a| = b = k =
1. The structure factor is C(k,t) = (¢ (k,t)o(—k, 1)),
where ¢(k, t) are the Fourier components of ¢. Lattices
with L = 1024,2048,4096 [13] and space discretization
Ax = 0.5,1 were used. Results will be shown for the
casey = 0.0488, T = 0,L = 4096, Ax = 1, Ar = 0.01,
(@) = 0. Similar results have been obtained for other sets
of parameters and temperaturesintherange0 = 7 =< 4.

A sequence of configurations at different values of the
strain yt is shown in Fig. 1. After an early time, when
domains are forming, the usual bicontinuous structure
starts to be distorted for yr = 1. The growth is faster
in the flow direction and domains assume the typical
striplike shape aligned at an angle 6(¢) with the direction
of the flow which decreases with time. As the elongation
of the domains increases, nonuniformities appear in the
system: Regions with domains of different thickness can
be clearly observed at yr = 11. The evolution at ill
larger values of the strain is shown for yt = 20. The
domains with the smallest thickness eventually break up
and burst with the formation of small bubbles.

A systematic existence of two scales in the size
distribution of domainsis suggested by the behavior of the
structure factor, shown in Fig. 2. At the beginning (see
thepictureat yr = 0.2) C(k, t) exhibits an almost circular
shape, corresponding to the early-time regime without
sharp interfaces. Then shear-induced anisotropy becomes
evident, C(k, t) is deformed into an ellipse, changing also
its profile and, for vt = 1, four peaks can be clearly
observed [14]. The position of each peak identifies a
couple of typical lengths, one in the flow and the other
in the shear direction. The peaks are related by the

FIG. 1. Configurations of a portion of 512 X 512 sizes of the
whole lattice are shown at different values of the strain yz.
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k— —k symmetry so that, for each direction, there are
two physical lengths. This corresponds to the observation
of domains with two characteristic thicknesses, made in
Fig. 1.

The dipsin the profile of C(k, 1) devel op with time until
C(k, 1) is separated in two distinct foils at yr = 4. The
evolution of the system until this stage is well described
by the solution of the linear part of (1) (letting » = 0):

C(7c, 1) = Coexp fokz(s)[kz(s)fl]ds’ 3)
where /2(s> =k + yskye, and C is the structure factor
at the initial time. Then nonlinear effects become essen-
tial in producing the patterns shown in Fig. 2 at yt =
11,20. At yt = 11 we evauate the positions of the peaks
at (ky, ky) = (0.015,0.107) and (k,, k,) = (0.038,0.23).

This gives a value of around two for the ratio between
the characteristic sizes of domains, the same value is
found for the ratio between the positions of the two
peaks in the hystogram of the domain size distribution.
The relative height of the peaks in one of the foils of
C(k,t) is better seen in Fig. 3 where the two maxima are
observed to dominate alternatively at the times yr = 11
and yr = 20.

The competition between two kinds of domains is a
cooperative phenomenon. In asituation like that at yr =
11, the peak with the larger k, dominates, describing a
prevalence of stretched thin domains. When the strain
becomes larger, a cascade of ruptures occurs in those
regions of the network where the stress is higher and
elastic energy isreleased. At this point the thick domains,
which have not yet been broken, prevail and the other
peak of C(k,r) dominates, as at yt = 20. In the large-
N limit the prevalence of one peak or the other has
been shown to continue periodically in time [7]. Here

vt =0.2

yt=1

\

FIG. 2. The structure factor is shown at different values of the
strain yt.
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FIG. 3. The same structure factor of Fig. 2 at yr = 11,20 in
a three-dimensional plot.

we have an indication of a similar behavior, although the
observation of the recurrent dominance of the peaks on
longer time scales is hardly accessible numerically.

The hallmarks of thisdynamicsarefound in the behavior
of the average size of domains, R, (¢) and R, (), in the flow
and shear directions. These quantities have been calcu-
lated through R, (1) = [ [ dk k2C(k,1)/ [ dk C(k,1)]~"/?,
and analogously for R,(r); their behavior is shown in
Fig. 4. Because of the alternative dominance of the peaks
of C(k,t), R, and R, incresse oscillating. The latter
reaches a local maximum at the characteristic times z,,,
when C(k,r) is of the form of Fig. 2 at yr = 20 and
thick domains are more abundant. Thetimeinterval 7, =
t,+1 — t, between two cascades of ruptures increases ex-
ponentially as the segregation proceeds so that the oscil-
lations appear to be periodic on a logarithmic time scale.
This is expected because domains are growing and longer
and longer times are required to break them. Thefollowing
argument simply illustrates the origin of the log-time peri-
odic oscillations: The breakup of an elongated domain is
caused by the shear flow, which enters Eq. (1) through the
last term on the left hand side, whose magnitude we infer
to be proportional to 7, !. For a sharp interface exposed
with an angle 6(¢) to the flow this term is proportional to
ysind(t) = y6(t) ~ yRy(t)/R.(t), where the asymptotic
smallness of 6(¢) has been taken into account. The RG ar-
gument developed below showsthat YR, (¢)/R. (1) ~ 1/1,
so that 7, ~ t, and hencelnt, ~ n + cost: The rupture
events occur periodicaly in Inz.

Stretching of domains requires work against surface
tension and burst of domains dissipates energy resulting
in an increase An of the viscosity [3,15]. -We calculate
the excessviscosity as An () = —y ! f% kykyC(k, 1)
[1]. Starting from zero An grows oscillating up to global
maximum at yr = 12. Then the excess viscosity relaxes
to zero in asimilar way to what was observed in previous
simulations [4]. The relative maxima of A»n are found in
correspondence of the minimaof R, when the domains are
maximally stretched.

In the case without shear the asymptotic kinetics is
characterized by scale invariance, which is reflected by
a power-law growth R(r) ~ ¢ of the average size R(r)
of domains [8]. The vaue of the exponent « is related
to the mechanism operating in the separation process
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FIG. 4. Evolution of the average domain size in the shear
(lower curve) and flow (upper curve) directions. The straight
line has slope 4/3.

being « = 1/3 for diffusive growth. In the case with
shear the existence of a similar behavior has not been
clearly assessed. A stationary state with domains of
finite thickness is generally observed in experiments [16].
Only in some experimental realizations the existence of a
regime with power-law growth has been shown [17,18].

The self-consistent solution of Eq. (1) shows[7,19] that
ageneralized scaling symmetry holds when a shear flow is
applied and different exponents are found for the power-
law growth of R, (¢) and R, (r). However, these exponents
are correct for vectorial models and do not directly apply
to the case of a binary mixture [20]. The existence of a
scaling symmetry and the actua value of the exponents
could not be obtained by our simulations because the
fast growth in the x direction makes finite size effects
relevant before a full redization of the scaling regime
occurs [21]. Moreover, the oscillatory behavior of R,(z)
and R,(t) prevents a straightforward computation of the
growth exponents. Therefore, in order to infer the actual
value of the growth exponents we resort to a RG analysis.

As usua, we define the RG transformation for the
Fourier components ¢; (1) = 1//V [dF ¢(F,1)e’*" of
thefield ¢ (7,¢). They verify the equation

dpip(t) Iep(t) _ i 8%
ot dk, Sp_ji(t)

with (ni()ne () = 2TTK*5(t — ¢')8(k + k'). Taking
into account the anisotropic growth of domains, we
generalize the RG scheme of [22] by considering the
change of scale and the field transformation:

ke = Ko = k™, k= K = kyb®,
ei(1) = b*er (),

where b is the rescaling factor. The basic idea of
the RG approach is to associate the scaling behavior
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with the existence of a fixed point of Eg. (4) under the
transformations (5), meaning that the domain structure
at time ¢/ > ¢ is dtatistically similar to the one at time
t apart from an anisotropic scale transformation with
factors b and b* aong the two axes. This implies
that a.,a, are the growth exponents. By dimensional
analysis the structure factor can be written in scaling form
as C(k,t) = R.(t)R,(1)f(x,y), where x = k,R,(¢) and
y = kyR,(¢) are invariant quantities. Form invariance
of C(k,t) with respect to the transformations (5) leads
to { = (ax + @,)/2. In the isotropic case [22] one
makes the phenomenological ansatz that the free energy,
being proportional to the surface area of the domains,
scales as b*@~1 gt the fixed point. In the present case,
since the main contribution to the free energy is due to
the interfaces in the direction of the flow, it appears
straightforward to assume j:[bfgo,i{,(t’)] = b Flek (t')]
[23]. This property, inserted into (4) together wit{% (5),
gives a Langevin equation similar in form to (4) with
rescaled parameters

1'*/ — Fbl+oq.*2{*2ay’ ,yl — yba)faﬁ»l, T/ = Th %

(6)
A fixed point of the above recursions with I',y #
0 is obtained when a, = 1/3, @, = a, + 1, with the
temperature being not relevant for the process of phase
separation. We observe that a difference between the
growth exponents Aa = a, — a, in the range 0.8 + 1
has been measured in [17,18]. Moreover, the above
analysis suggests that, for a constant value of the strain
vt, the excess viscosity scalesas An ~ y# with 8 =
1/3 [24].

In conclusion, we have studied the phase-separation
kinetics of a binary mixture in a uniform shear flow by
direct numerical simulation of the constitutive equations
and in a RG approach. Results show the simultaneous
existence of domains of two characteristic sizes in each
direction [25]. The two kinds of domains alternatively
prevail, because the thicker are thinned by the strain and
the thinner are thickened after cascades of ruptures in the
network. This mechanism produces an oscillation which
decorates the expected power-law growth R(t) ~ ¢* of
the average size of the domains, with a = 4/3 and 1/3
in the flow direction and the shear direction, respectively.
The oscillations occur on logarithmic time scales as in
models describing propagation of fractures in materials
subject to an external strain where the releasing of elastic
energy is measured [26]. Findly, it would be interesting
to evaluate by extensive simulations [27] the effects
of hydrodynamics [28] on the picture described in this
Letter.
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