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Experimental Demonstration of Generation and Propagation of Acoustic Solitary Waves
in an Air-Filled Tube
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Experiments are performed to demonstrate the generation and propagation of acoustic solitary waves
in an air-filled tube with a periodic array of Helmholtz resonators connected axially. The purpose is to
verify the theoretical findings made so far that nonlinear acoustic waves do not evolve into a shock but
into a solitary wave propagating steadily without any change of its smooth profile. To identify the soli-
tary wave, the temporal pressure profile is compared directly with the theoretical profile of the solitary
wave. Also checked are the relation between the peak sound pressure of the solitary wave and its half-
value width in time, and the relation between the peak sound pressure and the deviation of propagation
speed from sound speed. The experimental results show good quantitative agreement with the theory.

PACS numbers: 43.25.+y
When an intense acoustic wave is propagated in air,
it usually evolves into a shock. This is because the
propagation speed of the acoustic wave becomes faster
where sound pressure is higher [1]. By this nonlinear
effect, a wave profile is steepened forward and distorted
progressively, whereas the dissipative effect is too weak
to counteract it. As a consequence, there emerges a
discontinuity in the profile. This is the shock. Once the
shock is formed, it is decayed out by “nonlinear damping”
even in a lossless case. Hence steady propagation of
nonlinear acoustic waves in air has been thought to be
impossible. But it has recently been revealed, in theory,
that an acoustic solitary wave free from the shock can
be propagated steadily in an air-filled tube if a periodic
array of Helmholtz resonators is axially connected with the
tube [2,3]. Now that theoretical aspects of the acoustic
solitary wave have been clarified to some extent, we
are in a position to perform experiments to verify them.
This Letter reports the results of the experiments. Before
doing so, we summarize the theoretical findings obtained
so far.

The solitary wave is a compressive pulse localized
temporally as well as spatially and it can be propagated
steadily without any change of form. The propagation
speed is slower than the sound speed a0, i.e., subsonic,
but is faster than a threshold value determined by a0��1 1

k�2�, where k�� V�Ad ø 1� is a small parameter that
measures the volume of the resonator’s cavity V relative
to the volume of the tube per axial spacing between
neighboring resonators, A and d being the cross-sectional
area of the tube and the axial spacing, respectively. As
the speed approaches the upper bound a0, the peak sound
pressure of the solitary wave, p0

p i.e., the peak height,
becomes higher but is bounded by that of the limiting
solitary wave, given by 8gk��3�g 1 1�� relative to an
equilibrium pressure p0. As the speed decreases and
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approaches the lower bound, the height becomes lower
and the profile tends to take the soliton solution of the
Korteweg–de Vries equation. In fact, the acoustic solitary
waves which are small in height may be identified as the
soliton [4,5].

The remarkable change in evolution from the shock to
the solitary wave is brought about by weak linear dis-
persion due to the array of resonators. The spatially
periodic structure of the tube yields the dispersion of a
Bloch-wave-type, which makes propagation speed depen-
dent on frequencies and renders it slower than sound speed
[6]. It is noted, however, that this dispersion does not ap-
pear in the form of the higher-order derivative in the evolu-
tion equation and, therefore, it cannot always inhibit shock
formation. In fact, there are cases in which shocks can still
be propagated [2,3]. The Korteweg–de Vries equation is
derived only asymptotically in the limit of a high natural
frequency of the resonator. Incidentally, for the genera-
tion of the acoustic soliton, each Helmholtz resonator in
the array may be replaced by a side branch of any shape if
the side branch is closed otherwise and acoustically com-
pact [7]. But specific profiles of solitary waves will differ
depending on specific types of the side branch.

Since the solitary wave is a compressive pulse, both
the density and the temperature of air where the wave
is located are increased by adiabatic compression while
the air is pushed forward to obtain a velocity in the
direction of propagation. It is remarked that all of these
quantities vary in phase with the pressure. This implies
that mass, momentum, and energy can be transferred by
propagation of the solitary wave [8]. Such properties
should be compared with those of the shock. Whereas the
shock is decayed out eventually by nonlinear damping, the
solitary wave is free from this damping. Thus it has a great
advantage in being capable of transporting the physical
quantities steadily over a long distance.
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FIG. 1. Temporal profiles of the pressure disturbance p0 (in
excess) relative to the atmospheric pressure p0 measured,
respectively, at the locations 0.4 m (a) and 4.8 m (b) distant
from the valve in the tube without the array of Helmholtz
resonators, where the abscissa denotes the time and the scale
is 10 ms per division.

Having summarized the theoretical findings, we now
describe the experiments. We use a tube of stainless steel,
whose length is 7.4 m long and whose inner diameter
is 80 mm wide. Let the same Helmholtz resonators be
connected along the tube with axial spacing 50 mm on both
sides of the tube in a stagger. Each resonator has a cavity
of volume V �� 4.94 3 1025 m3� and a throat of length
L �� 35.6 mm� and of diameter 2r �� 7.11 mm�. Thus
the parameter k takes a value of 0.197. A lossless natural
angular frequency v0 is calculated by

p
pr2a2

0�LV , and
it corresponds to 257 Hz. By taking account of the
end corrections on both openings of the throat [2,9], L
is lengthened effectively to L 1 2 3 0.82r so that the
natural frequency is lowered to 238 Hz.

One end of the tube is connected to a high-pressure
chamber through a valve that is normally closed, while
the other end of the tube is closed by a flat plate. By
opening the valve to release the pressurized air stored in the
tube, pressure disturbances are produced in the air under
the atmospheric pressure and the room temperature 15±C.
As long as the initial pressure in the high-pressure chamber
before opening the value is fixed, almost the same pressure
disturbances can be produced so that an experiment can be
repeated with high accuracy. A pressure in the tube can be
measured by microphones at 18 locations along the tube,
each separated by axial spacing 0.4 m from the end of the
tube on the valve side.

Although the solitary wave assumes the absence of dis-
sipation, linear damping is unavoidable in the experiments,
which is due mainly to wall friction when a frequency
is well off the natural frequency of the resonator [6].
Suppose a harmonic wave having an angular frequency v
4054
is propagating unidirectionally in a tube of diameter D.
Its amplitude then decays as exp�2qx� over a propagation
distance x with the rate q given by C

p
2n�v �v�a0��D,

where C � 1 1 �g 2 1��
p

Pr, with g and Pr being,
respectively, the ratio of specific heats and the Prandtl
number, and n is the kinematic viscosity of air. Taking
the natural frequency v0 as v, for example, the decay in
amplitude is calculated to be 8% after propagation over
the tube length 7.4 m, where a0 � 340 m�s, g � 1.4,
Pr � 0.72, and n � 1.45 3 1025 m2�s for air at 15±C.
But because a typical angular frequency of the solitary
wave v is much lower than v0 (as will be seen in Fig. 4
below), q becomes smaller by the factor

p
v�v0 and the

decay is estimated to be about 3% over the whole length
of the tube.

We first observe that the shock is really formed and
propagated when the array of resonators is not connected.
Figure 1(a) shows the temporal profile of the excess pres-
sure p0 in reference to p0 measured at the location 0.4 m
distant from the valve. The profile is smooth and no shock
is involved. The peak excess pressure is 1.2 3 104 Pa.
Because the valve’s diameter is much smaller than the
tube’s, the air spreads out spherically into the tube so that
there appears an expansive tail behind the main compres-
sive pulse. The pressure profile measured at the location
4.8 m distant from the valve is shown in Fig. 1(b). Two
peaks can be seen: the first (left) pulse is the one traveling
down the tube and the second (right) pulse is the one re-
flected back by the closed end. Comparing the pulse in (a)
with the first and second pulses in (b), the first pulse is seen
to steepen forward (leftward) and the reflected pulse has
been fully transformed into a triangular pulse with shock
ahead. The reflected pulse has traveled the distance 10 m
in total, with the distance after reflection added. The shock
formation point is located at 8.8 m from the valve, which
is estimated by solving a lossless nonlinear wave equation
for a simple wave [1].

We now demonstrate the evolution when the array of
resonators is connected. At first, the experiment is per-
formed under the same condition as that in the tube with-
out the array. Figures 2(a) and 2(b) show the temporal
profiles of the excess pressure measured at the locations
0.4 and 4.8 m from the valve, respectively. The peak in
Fig. 2(a) is slightly smaller than the one in Fig. 1(a), and
the profile seems to have spread a little. This difference
results from the dispersive effects due to several resonators
located between the valve and the measuring point. Fig-
ure 2(b) shows clearly that no steepening takes place and
no shock is formed. The reflected pulse becomes smoother
and broader in width and it looks like a solitary wave. We
now check whether or not this is so.

The analytical expression of the solitary wave is given
for the excess pressure p0 in reference to p0 as follows [3]:

p0

p0
�

gk

g 1 1
f�z � , (1)

with
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z � v0
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i
1 const, (2)

where x and t are the axial coordinates along the tube and the time, respectively, and s is a parameter in 0 , s , 1. The
function f�z � is expressed inversely in terms of z as follows:

4 tan21
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where f6 are given by
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with the signs vertically ordered. The profile of f�z �
takes a pulse-form with a single peak of height f1 �.0� at
z � 0 and symmetric with respect to z � 0, decaying out
monotonously and exponentially as jz j ! ` [3]. Since
f is always positive, the solitary wave consists of a
compressive phase only and the propagation speed is given
by a0��1 1 ks�2� from (2). When the limit as s ! 0
is taken to approach the upper bound of the propagation
speed, f tends to the limiting solitary wave given by

f �
8
3

cos2

µ
z

4

∂
, (5)

in jz j # 2p and f � 0 in jz j . 2p, while when the limit
as s ! 1 is taken to approach the lower bound, f tends to
the soliton solution asymptotically given by [4,7]

f � a sech2
r

a

12
z , (6)

where s � 1 2 a�3 �0 , a ø 1�.
Because the reflected pulse is riding on the tail of the first

pulse, as is seen in Fig. 2(b), it is difficult to identify the

FIG. 2. Temporal profiles of the pressure disturbance p0 (in
excess) relative to the atmospheric pressure p0 measured,
respectively, at the locations 0.4 m (a) and 4.8 m (b) distant
from the valve in the tube with the array of Helmholtz
resonators having k � 0.197, where the abscissa denotes the
time and the scale is 10 ms per division.
base of the solitary wave. In order to measure the height
of the reflected pulse, we draw a straight line connecting
the minimal points of the pressure on both sides of the
reflected pulse and take the line as the base. The peak
height is measured from this base and compared with the
theoretical value �gkf1��g 1 1��p0 to determine a value
of the parameter s. For the profile shown in Fig. 2(b),
the peak excess pressure p0

p relative to p0 is 0.1, and s is
calculated to be 0.68. By using this value of s, the profile
of the pressure (1) with respect to the time t is drawn in
Fig. 3 as a broken line where the origins of t and p0�p0
are taken so that the peak of the theoretical profile may
coincide with that of the experimental one. Both profiles
agree very well quantitatively.

Next we examine evolutions in various cases where ini-
tial pressures in the high-pressure chamber are varied. In-
stead of the direct comparison of the pressure profiles,
we check the relation between the peak height of the
pulse and its half-value width in time. From the solu-
tion (1), the half-value width in z is defined as the one
in which f1�2 # f # f1. The solid curve in Fig. 4
shows the half-value width v21 (in time), normalized by
v

21
0 . In passing, v may be regarded as a typical angu-

lar frequency of the solitary wave. The abscissa p0
p�p0

is limited by the peak height of the limiting solitary wave

FIG. 3. Comparison of the temporal pressure profile of the
reflected pulse measured at the location 4.8 m distant from
the valve (solid line) with the theoretical one (dashed line)
calculated from the solution (1) for s � 0.68, where the
abscissa denotes the time, the scale being 10 ms per division,
while the ordinate denotes the excess pressure p0 relative to the
atmospheric pressure p0.
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FIG. 4. Relation between the peak excess pressure p0
p relative

to the atmospheric pressure p0 and the half-value width v21

(in time), normalized by v
21
0 , where the solid curve is the

theoretical result derived from the solitary wave solution (1)
and the same symbol represents the experimental data measured
at the same location indicated in the figure, but under various
initial pressures in the high-pressure chamber.

8gk��3�g 1 1�� �� 0.306�, at which the half-value width
takes 2p. As the peak pressure decreases, on the other
hand, the theoretical curve increases to infinity as v0�v ~p

p0�p0
p . This is simply the branch derived from the soli-

ton solution (6). The same symbol in Fig. 4 refers to the
data measured at the same location indicated but under
various initial pressures in the chamber. Although the dis-
tances for the solitary waves to be established should differ
depending on the initial pressures, the data lie on the theo-
retical curve. For the pulse shown in Fig. 2(a), the half-
value width v0�v takes a value of about 5 at p0

p�p0 � 0.1
and the relation of the solitary wave is not satisfied. How-
ever, in the course of propagation, the width of the pulse
becomes wider and approaches the theoretical curve.

As another check, we examine the propagation speed
of the pulse. Using the reflected pulse propagating toward
the valve, we calculate the speed y at a specific location by
measuring the ratio of the travel distance to the travel time
of the peak between the location and the one that is 0.4 m
distant from the valve. Since the speed of the solitary
wave is a0��1 1 ks�2� and is slightly slower than a0,
the deviation �a0 2 y��a0 is measured. Figure 5 shows
the theoretical curve as a solid line and the experimental
data. Note that the propagation speed is always measured
to be subsonic and many data scatter above the theoretical
curve, meaning y is slower. One cause of the latter may
be attributed to the wall friction. It makes the propagation
speed slower by C

p
2n�v�D relative to a0 [6], which is

estimated to be about 0.007 in the present case. If this
is taken into account, the data measured at the locations
4.8 and 5.2 m distant from the valve fall within the range
expected with a few exceptions. The scattering of the data
measured at the locations 4.0 and 4.4 m may result from
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FIG. 5. Relation between the peak excess pressure p0
p relative

to the atmospheric pressure p0 and the deviation of the
propagation velocity y �� a0��1 1 ks�2�� from sound speed
a0, normalized by a0, where the solid curve indicates ks��2 1
ks� given in theory for k � 0.197 and 0 , s , 1, and the
same symbol represents the experimental data measured at the
same location indicated in the figure, but under various initial
pressures in the high-pressure chamber.

the fact that the travel distance and time are too short. This
problem would be resolved if a tube was made longer.

In conclusion, it has been clearly demonstrated that the
array of Helmholtz resonators can effectively suppress
shock formation in the propagation of nonlinear acoustic
waves. To verify whether or not the solitary wave is gen-
erated, three checks have been made: the direct compari-
sons of the overall pressure profile, the half-value width,
and the propagation speed against the theoretical results.
These checks have proved the quantitatively good agree-
ment with the theory.
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