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Nondegenerate Parametric Self-Oscillation via Multiwave Mixing in Coherent Atomic Media
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We demonstrate an efficient nonlinear process in which Stokes and anti-Stokes components are
generated spontaneously in a multilevel medium coherently prepared by resonant, counterpropagating
fields. A medium of this kind combines large nonlinear gain and efficient intrinsic feedback, thereby
allowing for very weak optical fields to induce nonlinear processes. Mirrorless self-oscillation induced
by microwatts of light power (nanojoules of pulse energy) is observed.

PACS numbers: 42.65.–k, 42.50.Gy
The possibility of mirrorless oscillation in a nonlinear
system involving counterpropagating fields was suggested
by Harris over 30 years ago [1]. We report here an ex-
periment in which such spontaneous parametric oscillation
is induced by a pair of very weak fields in optically dense
resonant multilevel media. Such generation does not in-
volve an optical cavity and manifests itself as Stokes and
anti-Stokes components generated with a frequency shift
corresponding to that of the two-photon transition. As the
oscillator goes over threshold, dramatic intensity increase
and frequency narrowing of the generated light takes place.
These results show that a combination of a steep dispersion
and resonantly large nonlinearities associated with elec-
tromagnetically induced transparency can cause striking
nonlinear processes to be induced by a light field corre-
sponding to mW of power and nJ of pulse energy.

The present work builds on recent theoretical and experi-
mental studies demonstrating that the optical properties of
dense ensembles of coherently prepared multistate atoms
can be drastically altered. Examples include making an
opaque medium transparent over the distances correspond-
ing to several thousand absorption lengths [2], reduction of
group velocities to few tens of meters per second [3,4], las-
ing without population inversion [5], and a large enhance-
ment of nonlinear optical effects [2,6–9].

Processes of the kind demonstrated in the present Letter
open the door for a new regime of quantum nonlinear
optics, which can potentially be used to study interactions
of very low-energy light fields without the need of high-
Q cavities [10]. Recent theoretical work indicates that
this regime can be used for few photon quantum control
[11], switching [12], and quantum noise correlation [13].
Likewise, narrow-linewidth signals may be of interest for
optical magnetometry and frequency standards.

Before proceeding we emphasize that the notion that
a nonlinear system can self-oscillate is not new. Al-
though the original proposal [1] based on nondegenerate
frequency mixing has not been realized up to now due to
small values of nonlinearities in available materials and,
especially, difficulties in achieving phase matching [14],
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a number of other relevant experiments have been carried
out. In fact, it is much easier to achieve mirrorless oscil-
lation in degenerate four-wave mixing. The possibility of
self-oscillation in such interactions has been predicted in
[15], and it has later been identified as a generic source for
instabilities arising in interactions of powerful laser beams
with alkali vapor [16]. A number of such nearly degener-
ate instabilities have been observed in a vapor driven by
very strong (at a level of hundreds of mW), off-resonant
fields [17]. Workers in the field have also noted the im-
portance of two-photon nonlinearities in studies of polar-
ization instabilities [18]. In this work instabilities were
seen with tens of mW laser power.

As compared to this earlier work the present results uti-
lize atomic coherence effects in a resonant, strong coupling
regime [2,6–9] in which nonlinearities cannot be derived
from a usual perturbation expansion. In this regime quan-
tum interference allows one to eliminate resonant losses
and drastically increase the relevant nonlinearity. Similar
to the earlier experiments, oscillation occurs due to effec-
tive feedback created by two counterpropagating driving
fields. In a medium with a very slow group velocity, such
a feedback corresponds to an effective “cavity” with a life-
time corresponding to a group delay time tg [19], which
exceeds the free-space delay time by a factor h � 106

[4]. Such a steep dispersion allows for automatic phase
matching in an intrinsically phase-mismatched configura-
tion. The resulting oscillation frequency is governed by a
frequency pulling equation and is tightly locked to a light-
shifted two-photon transition frequency.

Because of the combination of resonant nonlinearities
and steep dispersion, laser power required to observe os-
cillation was several orders of magnitude lower than in
any of the experiments reported so far. Furthermore, os-
cillation here occurs in a nondegenerate configuration,
which is intrinsically phase mismatched. Unlike the im-
portant earlier work [18] it does not involve polarization
instabilities and also does not, in general, occur in the
form of a cone. Furthermore, the present work demon-
strates a dramatic narrowing of the generated signals at
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FIG. 1. (a) A prototype four-level model for self-oscillations.
In general, we assume that each driving field couples both of
the ground states. The upper levels of this double-L system can
represent some manifolds of states. In the experiment states c
and b are hyperfine sublevels of the Rb ground state 5S1�2.
(b),(c) Experimental setups (schematic).

oscillation threshold (without a cavity) as well as tight
frequency locking to the two-photon resonance.

We first observed the oscillation as the result of simple
Fresnel reflection from the rear window of the Rb cell.
Figure 1b shows the experimental arrangement used in
most experiments, and Fig. 1c shows the simplest experi-
mental configuration that produced oscillation. In the
setup of Fig. 1b a 794 nm beam from an extended-cavity
diode laser [tuned to the vicinity of F � 2�1� ! F0 �
3�2� transition of Rb85�87�] passes successively through
an optical isolator (I), a focusing lens, a heated 5 cm
long Rb cell, and onto a fast photodiode (PD). A beam
from another extended-cavity diode laser (794 or 780 nm)
propagates in the opposite direction. The signal from
the photodiode is detected using a microwave spectrum
analyzer (SA). With proper tuning of laser frequency,
the backward beam induces the oscillation in the system.
When the self-oscillation occurs, the detected Raman beat
note signal at a frequency of hyperfine splitting (vhfs) in-
creases in amplitude by as much as 60 dB and its linewidth
narrows from 200 kHz to less than 300 Hz (Fig. 2a). Un-
der appropriate conditions the beat note linewidths as nar-
row as 100 Hz FWHM were observed (Fig. 3a). This
is much narrower than the usual broadening mechanisms
for two-photon transitions under the present conditions
FIG. 2. (a) A typical signal recorded by a fast photodiode. Curve a is recorded with only forward driving beam present.
Self-oscillations occur in the presence of the forward and backward driving fields (curve b). Parameters are as follows: cell
temperature 92 ±C; forward driving beam with power 10 mW and spot size 1.5 mm is detuned by 80 MHz to the red side of the
F � 3 ! F 0 � 30 transition of the D1 line; backward driving beam with power 2.5 mW and spot size 1.5 mm is detuned by
800 MHz to the blue side of the F � 2 ! F 00 � 300 transition of the D2 line. Doppler broadening is �500 MHz. (b) Calculated
signals corresponding to the experimental conditions of (a). (At the point corresponding to parametric oscillation linear theory
predicts infinite growth.)
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(primarily, transit broadening gbc � 50 kHz and power
broadening �500 kHz). The oscillation occurs without
any cavity enclosing the cell. We have been careful to
eliminate possible extraneous sources of feedback to lasers
or other optical and electronic elements.

We found that the oscillation occurs readily if the
forward and backward fields are tuned to the different
ground state hyperfine level as diagramed in Fig. 1a. It
is much more difficult to make the system oscillate if
the backward beam is tuned to the same frequency as the
forward beam. If tuned to different ground state hyperfine
levels, the oscillation was observed with the backward
beam coupling either the same (P1�2) or different (P3�2)
upper-state fine-structure levels as the forward beam. In
our two-laser experiments it was easy to see oscillation
for both 85Rb and 87Rb isotopes. When oscillating, the
Rb vapor can convert as much as 4% of the total input
power into the frequency shifted Stokes and anti-Stokes
sidebands. In the two-laser experiments oscillation was
observed for forward laser powers 300 mW–15 mW, spot
sizes 0.3–2 mm, and cell temperatures 65–110 ±C. When
both of the driving lasers were close to respective single-
photon resonances of D1 and D2 lines and the power of
the forward (795 nm) laser was about 5 mW, oscillation
was observed with backward (780 nm) power as low as
a few mW (Fig. 3b). Temperature for this observation
was �110 ±C. Oscillation has also been seen when the
intensity of such a weak backward beam was turned on
and off with a chopper at a rate of up to a few kHz. This
indicates that backward pulse energies of order of nJ are
sufficient to induce oscillation.

The oscillation frequency shift (v0) does change some-
what with laser tuning (typically �30 Hz�MHz of laser
tuning) and with an angle between the forward and back-
ward beams [20]. However, the oscillation frequency al-
ways remains within the bandwidth (few hundred kHz)
of the power broadened and shifted transparency window
[9]. In general, oscillation occurred readily when two
beams had identical circular polarizations, and generated
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FIG. 3. (a) A typical beat signal at 3.034 GHz recorded when
the frequency of the driving laser is locked to a reference
cavity. (b) A typical dependence of the generated anti-Stokes
forward power as a function of the backward driving power
in a vicinity of oscillation threshold. Inset illustrates wave
vector mismatch. If all fields are propagating along the z axes
�kF

0 1 kB
0 2 k1 2 k4�z � 2v0�c.

beams had polarizations identical to those of driving
beams. It was possible, but more difficult to see oscilla-
tions with other polarization configurations. Polarization
instabilities have not been observed. We have also ana-
lyzed spatial properties of the generated beams. In the
vicinity of oscillation threshold the shapes of generated
beams were similar to Gaussian, and the directions of
their propagation coincided with those of copropagating
driving beams. Far above threshold, significantly richer
spatiotemporal dynamics was observed [20].

We have analyzed the characteristics of the forward and
backward beams by making beat notes with independently
tuned laser sources, and by using optical cavities to
analyze the spectra. We found that the field components
at frequencies of the forward and backward driving
fields (nf or nb) are surrounded by generated first order
Stokes and anti-Stokes fields at frequencies nf,b 6 v0.
In certain cases second order components have been seen
as well. The generated components produce, in general,
an asymmetric spectrum. In particular, in cases when
forward driving field is tuned to, e.g., upper ground
state hyperfine sublevel and backward driving beam is
tuned to the lower hyperfine sublevel, the anti-Stokes
component observed in a forward direction is much more
(�10 20 dB) intense than the Stokes one.

Motivated by experimental results, we consider a theo-
retical model in which atoms in a double L-type con-
figuration are interacting with six optical fields (Fig. 1a).
These include two counterpropagating driving fields with
frequencies nF , nB and complex slowly varying ampli-
tudes EF and EB; anti-Stokes and Stokes components with
frequencies n1,3 � nF 6 v0 propagating in the forward
direction (E1,E3), and corresponding components with
frequencies n2,4 � nB 6 v0 propagating in the backward
direction (E2,E4). Below we focus on the linear theory
describing the oscillation threshold. Hence, all generated
components are treated to first order only and saturation
effects are disregarded. The driving fields, however, are
treated to all orders, in contrast to the usual x3 theo-
ries. For the present problem the relevant linear and
nonlinear polarizations were calculated from density ma-
trix equations for each velocity group and averaged over
Maxwellian velocity distribution. In the present calcula-
tions we consider fields interacting in a slab of medium of
the length L. Assuming that all fields are in single spatial
modes, we restrict ourselves to an effective 1D problem
and numerically integrate the appropriate Maxwell equa-
tions. The boundary conditions are taken to include a weak
“seed” input (E ) at anti-Stokes frequencies (corresponding
to, e.g., spontaneous emission, or vacuum field).

We first illustrate the origin of the oscillation. To
this end, let us assume that absorption of the driving
fields is negligible, and there is no inhomogeneous
broadening. Furthermore, we consider a special case
in which forward driving field is resonant with opti-
cal transition c ! a and the backward driving field
is close to resonance with transition b ! a0 (DB is a
single photon detuning) and disregard the coupling of
the driving fields with all other transitions. In such a
situation only forward anti-Stokes (E1) and backward
Stokes (E4) fields are involved in nonlinear interaction
as shown in Fig. 1a. In this case weak fields evolve
according to c≠Ēi�≠z � aijĒj , with �i, j� � �1, 4� and
a11 � 2h�gbc 1 i�v0 2 vhfs� 1 ijVBj

2�DB� 2 iDk,
a14 � ih�VBVF��DB��, a41 � ih4�V�

BV
�
F��DB��, a44 �

ihjVF j
2��DB. Here we assumed equal dipole ele-

ments and radiative decay rates grad on all transitions.
h � 3��4p2�N�l�2gradc�jVFj

2, where l is optical
wavelength, N is atom density, and VF,B are Rabi
frequencies. In the relevant limit h ¿ 1, this quantity
corresponds to the ratio of c to the group velocity.
Dk � � �k1 1 �k4 2 �kF 2 �kB�z is a wave vector mismatch.
Above equations contain cross-coupling terms between
two fields resulting in four-wave mixing gain [21], and
the loss term, which is proportional to the dephasing rate
of ground state coherence gbc. The latter can be made
extremely small for dipole-forbidden transition.

When the phase matching condition is satisfied
[Im�da� � 0, da 	 �a11 2 a44��2], we find

E1�L� � E4�0�� �
E

da sin�sL�c� 2 s cos�sL�c�
, (1)

where s �
p

a14a41 2 �da�2, and the unimportant pro-
portionality constants have absolute values of the or-
der of unity. These solutions diverge if tan�sL�c� �
s��da�, which indicates the onset of mirrorless oscilla-
tions. Note that the latter condition can be satisfied if
jVFVBj . gbcjDBj, which is identical to a strong cou-
pling condition of Refs. [2,6–9,11–13]. When dephasing
of ground state coherence can be disregarded, gbc ! 0,
the oscillation condition becomes

jVBj jVF j
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i.e., in the limit of large group delay tg and small detuning
D a tiny laser power is sufficient to induce oscillation.
As shown in [10,13] the above condition corresponds to
only a few photons per atomic cross section in (at least)
one of the beams. We now examine the phase matching
condition. Close to the two-photon resonance we have

h�2�v0 2 vhfs 2 �jVF j
2 2 jVBj

2��DB� 1 cDk � 0 .
(3)

It is interesting that this equation resembles closely the
frequency pulling equation of the usual laser theory, with
frequency stabilization coefficient h�2. The first term
in the left-hand side corresponds to atomic dispersion,
and the second describes the geometrical phase mismatch.
This contribution is proportional to the Raman transition
frequency (e.g., for fields propagating along the same
direction Dk � 2v0�c, Fig. 3) and also depends on
relative angles between driving beams. Hence it plays
a role analogous to the cavity shift. Note, however,
that under the typical oscillation conditions stabilization
coefficient h ¿ 1 and the oscillation frequency is tightly
locked to the light-shifted Raman transitions frequency.

In the process considered above scattering of Stokes
and anti-Stokes fields into each other results in an ef-
fective feedback, and this scattering is also accompanied
by parametric amplification. Hence self-sustained oscilla-
tion can occur. Other nonlinear processes can also con-
tribute to oscillation. When only a forward driving field
is present nonlinear interaction results in the coupling be-
tween copropagating Stokes and anti-Stokes fields lead-
ing to coherent Raman scattering and amplification of
the copropagating pair of fields in the vicinity of two-
photon resonance [7,8]. Oscillation is not possible in
this case, since no effective feedback is present. How-
ever, when coherent Raman scattering exists in addition
to the coupling between counterpropagating Stokes and
anti-Stokes components, it can result in lowering the os-
cillation threshold. There exists also a process leading
to the scattering of the counterpropagating anti-Stokes (or
Stokes) waves into each other, which does not change the
total photon number in generated fields. Consequently, it
alone can never lead to the oscillations. However, oscil-
lations can emerge if in addition to the parametric energy
exchange additional amplification mechanisms (e.g., co-
herent Raman scattering) are present.

In general, for the detailed comparison of the theory
and experiment all such processes should be taken into
account. They give rise to simultaneous generation of all
components in both directions. To make a comparison
we have solved the full system of propagation equations
numerically, taking into account Doppler broadening, and
propagation of all fields. The results (Fig. 2b) show good
qualitative agreement with experiments.
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