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Second-Harmonic Rayleigh Scattering from a Sphere of Centrosymmetric Material
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We describe the electromagnetic theory of second-harmonic generation from the surface of a sphere
that is small compared to the wavelength of light. In a leading-order expansion, the second-harmonic
radiation is emitted in nonlocally excited electric dipole and locally excited electric quadrupole modes.
We analyze the problem with particular emphasis on experimental aspects, such as the radiation pattern,
polarization selection rules, determination of nonlinear susceptibilities, radiation efficiency, and spectral

characteristics.

PACS numbers: 42.65.—k, 03.50.De, 52.35.Nx, 73.20.Mf

Second-harmonic generation (SHG) is a well-estab-
lished surface-specific probe of centrosymmetric media
[1,2]. In the dipole approximation, SHG is forbidden
in the bulk of a medium having inversion symmetry,
while at the surface inversion symmetry is broken and
SHG is dlowed. Despite this fundamenta basis for the
surface sensitivity of the SHG process, the method has
been primarily employed in studying planar surfaces.
Recent experiments have, however, demonstrated the
utility of the approach for probing the surfaces of particles
of down to submicron dimensions [3] and suggest a
much wider range of application for the technique. At
present, the theoretical description of the SHG process
from nonplanar surfaces is relatively undeveloped. In
particular, even for the simplest limiting case of SHG
from the surface of a small sphere of centrosymmetric and
isotropic material, no general theoretical description has
been given. It isthe purpose of this Letter to present the
corresponding electromagnetic theory of second-harmonic
(SH) scattering.

A distinctive feature of the process of the SH Rayleigh
scattering (SHRS) lies in the role of cancellation of the
radiation from different parts of the sphere. For linear
Rayleigh scattering (LRS), the radiation process oc-
curs without any significant phase shift or cancellation
for a sphere of sufficiently small radius. The same cir-
cumstance applies to third-order nonlinear scattering pro-
cesses [4,5]. For SHRS, however, the response vanishes
in the dipole approximation owing to the presence of in-
version symmetry [6]. In this work we develop a theory
to describe the leading-order nonvanishing termsin a mul-
tipole expansion. Previously second-order nonlinear pro-
cesses from spherical particles have been examined
theoreticaly for a bulk nonlinearity [7,8] and for some
specia surface models[9,10]. Here we treat the interface
in a general manner and derive a theory permitting an ar-
bitrary response, in accordance with the model that has
been successfully applied in nonlinear optical studies of
adsorption, molecular orientation, spectroscopy, and dy-
namics at planar interfaces [1,2].
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The analysis presented here reveals the leading-order
contributions to SHRS arise from two sources: nonlocal
excitation of an electric-dipole moment (E1) and local
excitation of the electric-quadrupole moment (E£2). The
presence of these two sources and their distinct radiation
patterns cause the SHRS process to differ significantly
from that of LRS. In this Letter, we examine the
nature of the radiation pattern for SHRS and present
new selection rules, including the prohibition of nonlinear
scattering along the forward and backward directions.
From this anaysis of the radiation process, we are
able to give protocols for determining, as completely as
possible, the surface nonlinear susceptibility tensor for the
sphere. Consideration of the SHRS efficiency compared
with that for a planar surface alows us to estimate
the minimum particle size (radius a ~ 5 nm) for which
SHRS scattering is expected to be readily observable.
With respect to spectral characteristics, the basic variation
of the scattered power in SHRS is found to scale with the
frequency as w?, in contrast to the classic w* dependence
of LRS. In addition, we predict new resonances for
metallic particles arising from excitation of both dipole
and quadrupole surface plasmons.

The problem of SHRS is described schematically in
Fig. 1. We wish to determine the SH radiation in the far
field for nonlinear scattering from a sphere of radius a
much less than the optical wavelength A. We treat the
nonlinear response of the sphere as a thin layer localized
at the surface of the sphere and represented by a surface
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FIG. 1. Scheme for SH Rayleigh scattering by a sphere.
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nonlinear source polarization P>, The quantity P2 js

determined by the pump field E/() present at the interface
through P« = Y@:E/@E/ @) No regtriction is placed
on the surface nonlinear susceptibility %’'?, other than
the symmetry constraints appropriate for a sphere with a
surface that is homogeneous and exhibits in-plane
isotropy. With respect to the local coordinate system of
parallel (||) and perpendicular (L) directions, the allowed
elements of ¢ have the form of Xs(z)l L, Xfl””, and

)(Y ”L“ [11]. We include an arbitrary isotropic linear
dielectric response for the sphere (&,), the interface (&),
and the lossless exterior region (g1). The incident exci-
tation is taken as a plane wave, EE,‘fC)(r) = Eyexp(ik; -
r)é&), with a polarization state &, and wave vector
ki = k[e1()]"?k; = (0/c)[e1(w)]/?k.

We have solved this problem by recognizing that in
the regions away from the interface, there is no nonlinear
source. The general form of the electric fields may
then be expressed as E?*) = S{a f,(K;r)X (0, ¢) +

ag"v X [/1(Kir)Xin (0. @))/Ki},  where  fi(Kir) =
{ji(K:r), h\"(K;r)} is the appropriate spherical Bessel
or Hankel function, respectively, X,,,(0, ¢) are vector
spherical harmonics, and K; = [&;2w)]"/*2k are the
magnitudes of the SH wave vectors K; outside (z = 1)
or inside (i = 2) the sphere. The coefficients {aly, a?"}
in the SH field expansion are obtained by applying
boundary-matching conditions appropriate for a polariza-
tion sheet induced by the surface nonlinearity [2]. The
formalism developed here may also be extended to SH
scattering in the Mie regime (arbitrary sphere radius a),
as will be treated elsewhere.

Following this procedure, we find for the radiated SH
at locationr = ri in the far field,

ECo) — %[n X <p - %Q(ﬁ)ﬂ XA, (1)

Here p and Q are the effective electric dipole and vector
quadrupole moments, respectively, given by

dpP, ch'
dQ,

Figure 2 shows representative emission patterns for LRS
(@), (e) and SHRS (b), (), (d), (f). Figures 2(a)—2(d) cor-
respond to linearly polarized excitation, while Figs. 2(e)
and 2(f) correspond to circularly polarized pump ra-
diation. For linearly polarized excitation, various ra-
diation patterns may result. For pure dipole (y; #
0, x> = 0) or quadrupole (y; = 0, yo» # 0) emission
in (b) and (c), respectively, the radiation patterns are
symmetric. In contrast, when both sources of radiation
are present (y;, xy2 # 0), more complex and asymmet-
ric radiation patterns result as, e.g., in Fig. 2(d) where
x1 = [e1Qw)/e1(w)]x2. A sdection rule that follows
immediately from Egs. (2) and (4) (and can be shown to

27[e1w)
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&)/15, (2a)
Q(h) = 167ma’Ej x»(fi - &)&/5, (2b)

and quantities y; and y, are linear combinations of
the elements of %¢® with

P = 87Tl.k]a3EgXllA(1(é'() .

@ Al @ ALl
xn Lt + &M,

©)

The coefficients £,”*, presented in Table !, account
for the influence of the linear optical response of the
system. They comprise products of the local-field factors
Lﬁl(Q) (27 + l)sl(Q)/[lsz(Q) + (I + 1)e;(Q2)] and

LiQ) = sz(Q)L "Q)/e'(Q) for E1(I=1) and
E2 (I=2) mod% at the fundamental ({2 = w) and SH
(Q =2w) frequenmes The value of the magnetic
local-field factor of L” = 1 results from the assumption
of a spatially uniform magnetic permeability.

From Egs. (1) and (2), we see that both electric-
dipole and electric-quadrupole moments contribute to
the leading-order response for SHRS. The comparable
strength of these two terms arises from the fact that the
electric-dipole moment is excited by the fundamental field
through nonlocal interactions (E1 + E2 and E1 + M1),
while the quadrupole moment is excited through a local
interaction (E1 + E1). Magnetic-dipole (M 1) emission,
while of the same order, is absent because of the axia
symmetry of the system. If we compare the features
of SHRS with LRS, severa differences may be readily
identified. First, the SHRS radiation arises from two
different modes (E1 and E2), while LRS issimply an E'1
scattering process. Second, the E1 component in SHRS
corresponds to a dipole aligned along the direction of the
pump beam (k,), rather than along the direction of the
pump field (&), as in LRS. A further distinguishing
feature for E1 emission in SHRS is that this mode
of emission cannot occur for excitation by circularly
polarized light.

To examine these emission properties, we calculate the

()
Xl = Xs,J_J_J_ﬁlll

| radiated power per unit solid angle:

- ]3/2{|p|2[1 - ko (5 )lQ( PI = 18 - &)+ 5 mi - p)@ - Q@) (@

hold for spheres of arbitrary size) is the lack of SH radia-
tion emitted along the forward or backward directions.

In terms of application of SHRS to probe surface
properties, % is the essential quantity linking electro-
magnetic response to the microscopic chemical and physi-
cal characterization of the system. We now consider its
experimental determination. As we have demonstrated
above, the SH radiation pattern is completely specified
by the two coefficients y; and y,, corresponding to the
E1 and E2 emission terms. Thus, only two linear com-
binations of three allowed elements of ‘_’(2 can be ex-
tracted [12]. Many schemes may be |dent|f|ed to find the
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TABLE |. Effective field factors £,”* in terms of the local-field factors L&'

! Lt £

£IIILII

1 LEQo)LEN(@)LP(w)  GB/ALE'Qo)L[ (o)L (o)

+ (5/2LE' Qo)L (@)L} (o)

2 LPQw)LE (o)L (w) —L2Q2w)L{ ()L} (@)

—Li' Qo)L ()L (@) + (3/2)L{'2w)LE(0)L[ ' (»)
- 5/2)L' Cw)LE (o)L ()
3Lﬁ2(2w)Lﬁl (a))Lﬁ1 (w)

experimentally accessible values of y; and y,. One con-
venient approach is to record the SH power radiated at
some scattering angle, 8(#0, 7 /2), relative to k,, asfunc-
tion of orientation of the polarization of a linearly polar-
ized pump beam. By fitting such data to the functional
form described by Eq. (4), one readily obtains the quanti-
ties |x1l, |x2|, and their relative phase. Note that to ex-
tract | y»| alone, one may employ a circularly polarized
pump radiation, for which E1 emission is absent.

The strength of the SHRS process is of considerable
importance from the experimental viewpoint: Since the
nonlinear response arises from a surface layer in the
presence of cancellation effects, one may expect relatively
weak SH signals. In view of this situation, we examine
the radiation efficiency for SHRS and apply this result
to infer a typica range of experimentally accessible
particle sizes. Experimentally, one can collect the SH
radiation emitted into a large solid angle (=1 steradian).
In this case, Egs. (2) and (4) yield a scattered SH power
from a particle of Py, = cEjlxs,|*(ka)®, where x,,
is the effective nonlinear response. The corresponding
expression for a planar interface may be written as PZ’Z ~
cEglxp11*k*A,;, where A, is the irradiated area of the
plane [2]. Consequently, the ratio n of the radiated SH
power from a dilute collection of N spheres and to that
from a planar interface is given by n = N’PZw/T{Z ~
(ka)4(|Xsp|2Asp)/(|XpZ|2ApZ)a WhereAsp = 4N7Ta2 isthe
aggregate area of the spheres. If we are able to probe a
collection of particles with an aggregate area A, = A,
then n = (ka)* results for |x,,| = |x|. With current
experimental techniques, one might reasonably assume
that SH signals as small as 10~ from that of a planar
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FIG. 2. Linear (a) and SH (b),(c),(d) radiation patterns ex-
cited by alinearly polarized light [(a), inset] for (y; # 0, x> =
0), (x1 =0, x2 #0), and [x; = x26:1(2w)/ei(w)], respec-
tively. The solid (dashed) lines describe scattering in a plane
paralel (perpendicular) to the polarization of the incident light.
Linear (e) and SH (f) radiation for circularly polarized excita-
tion [(e), inset]. It should be noted that (), (€), and (f) are
solids of revolution about k;, while (c) is a solid of revolution
about &.

surface can be measured, corresponding to n =~ 10™* or
(ka) = 0.1. This suggests that SHRS should be suitable
for examining particles with radii a < 5 nm.

The final issue that we address is the spectral response
of the SHRS process. Let us first consider the behavior
for SHRS when all of the optical response, both linear and
nonlinear, of the sphere may be considered as frequency
independent. We then find from Egs. (2) and (4) that the
scattered SH power scales as w®. This contrasts with
the well-known w* behavior for LRS. This dependence
will be modified by the inherent frequency dependence
of ¥®. In addition, the linear optical response of the
dielectric media as incorporated into the local-field factors
may strongly influence the SH radiation. In particular,
for materials with a metallic dielectric response with
Ree,] < 0, new surface resonance modes are expected.
These Frohlich modes of the sphere occur when the real
parts of the denominators of the local-field factors Lff’
vanish, i.e., Rele>(Q)] + (I + 1)e;(Q) = 0. Both the
[ =1 and [ =2 modes may be resonantly enhanced
by single- (0 = w) or two-photon () = 2w) processes.
This leads to the presence of resonance enhancement in
the SH scattering process at the four distinct frequencies
where the resonance condition above is satisfied.

Within the Drude model of the dielectric response with
g2 =1~ w3/[o(w + iy,)], the resonance condition
yields, for ¢, = 1, dipole plasmon resonances at frequen-
cies {w,/+/3, w,,/\/ﬁ} and quadrupole plasmon reso-
nances at frequencies {w ,v/2/5, w,/+/10}. Weillustrate
this behavior for a Drude model of aluminum. We take
the surface nonlinearity to be dominated by Xs,z (.1 and
make use of bulk Drude parameters of fw, =~ 15.55 eV
and iy, = 0.49 eV, inferred from the experimental val-
ues for e,(=¢’) [13]. Figure 3 shows the spectral de-
pendence of the enhancement in the total radiated power
for metal spheres of radii « = 2.5, 5, and 10 hm rela-
tive to that from a spherical shell of fixed 2.5-nm radius.
With respect to the size dependence of the response, the
dominant characteristic arises from the scaling P, « a®
predicted by the electromagnetic theory developed in this
Letter. We have aso included two additional factors that
alter the spectral characteristics as a function of particle
radius: afinite-size correction for the plasmon resonance
condition, which shifts the resonance frequencies to lower
values with increasing size [14]; and a phenomenological
modification of the metal dielectric response to account
for surface scattering of the conduction electrons, which
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FIG. 3. Main panel: Spectral dependence of the radiated SH
power, P, for linearly polarized excitation for metal spheres
of radii @ = 2.5, 5, and 10 nm. The power is plotted relative
to that for a 2.5-nm-radius shell with the same surface nonlinear

response (X,i?L 11) as that of the metal. Inset: Spectra
dependence of P, for linear scattering from metal spheres of
radius a = 5 nm.

broadens the resonance features with decreasing size [15].
Although these effects alter the spectral profile somewhat,
the principal features can still be identified as the four pre-
dicted plasmon resonances. The strong single-photon res-
onances are seen near photon energies of 9.0 and 9.8 eV
and weaker two-photon resonances are present near 4.5
and 49 eV. LRS, on the other hand, exhibits only a
single dipole plasmon peak near 9.0 eV [Fig. 3 (inset)].
In addition to the possibility for spectroscopic studies of
both dipole and quadrupole plasmons afforded by SHRS,
it should be noted that exploitation of those pronounced
resonances significantly enhance the detection sensitivity
for suitable particles.
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