VOLUME 83, NUMBER 20 PHYSICAL REVIEW LETTERS 15 NVEMBER 1999

Manipulation of Motional Quantum States of Neutral Atoms
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Cold Cs atoms are cooled into the ground state=(0) of a far detuned 1D optical lattice. From
this state, we prepare and detect several quantum states of motion. First, we produce squeezed states of
n = 0 (andn = 1) and record the time evolution of the velocity distribution of these states. A velocity
distribution compressed by a factor of 4 compared to that of the ground state is obtained. Second, we
prepare a linear superposition of= 0 andrn = 1 and observe its time evolution.

PACS numbers: 32.80.Pj, 03.75-b

Production of pure quantum states of motion of trappecdtrossing each other in a vertical plane [8]. After loading
particles provides not only a clear illustration of quan-from a magneto-optical trap, abols X 10° atoms are
tum mechanics, but it also constitutes the ultimate controtonfined at a temperature of ab@® wK. The interfer-
of particle motion. For instance, the ground state of ance of the two beams leads to a modulation of the poten-
particle in a harmonic potential is a minimum uncertaintytial along the vertical axig with a period of665 nm and
state and this control has a variety of applications in atomwith an amplitude of about 0.2 mK sufficient to trap the
optics, atom lithography and interferometry, quantumatoms in each microwell independently. Each microwell
logic, and quantum communications. Several theoreticasupports about 30 bound states and the harmonic approxi-
papers have proposed controllable systems enabling multination is valid up ton = 10. The oscillation frequency
particle entanglement [1]. On the experimental sidealongz, measured using th&n = *1 sidebands in a two
quantum motional states of a single trapped ion have begphoton Raman spectrum [8], i8os. /27 = 85(5) kHz at
observed [2], and a quantum logic gate with two trappedhe center of the trap. The Lamb Dicke factorzs=
ions has recently been demonstrated [3]. Cold neutratzo = 0.16, wherek is the wave number of the D2 line.
atoms in optical lattices may offer a long decoherenceo = v//i/2mwq. = 21 nm is the rms size of the ground
time because of their very weak coupling to the environstate angy/m = \/liwes./2m = 11 mm/s its rms veloc-
ment and the possibility of parallel processing [4,5]. ity width. The trapped cloud has a nearly Gaussian shape

In this Letter, we present the production of variouswith a vertical rms Sizezy,, = 53(5)um so that about
guantum states of motion of neutral Cs atoms in a fad60 horizontal microwells are occupied, each containing
detuned 1D optical lattice. Squeezed states, cohereabout 1000 atoms. In the following, we restrict our at-
states, and linear superpositionsiof= 0 andn = 1 states tention to the motion along First we perform sideband
are observed. Velocity measurement is performed using §0ling of motion along as described in [8] and put, in
ballistic expansion (BE) absorption imaging technique. AslO ms, 95% of the atoms in the ground state. The cool-
the cold atom sample containsl0’ atoms, a single image Ng pProcess uses stimulated_ Raman transitions between the
provides the full velocity distribution of the quantum state|F = 3) and |[F' = 4) hyperfine ground states. The Ra-
l(v)|? and a set of images gives its time evolution. Suchman beams are vertical and counterpropagating in order
velocity distributions were not accessible in single trapped© allow transitions between different vibrational states.
ion experiments, where the particular quantum states wefdeasurement of the velocity distribution using BE is per-
inferred from the analysis of Rabi oscillations betweenformed as follows: the potential is suddenly switched off,
vibrational states [2]. To avoid thermal excitation, thethe atoms expand freely for a time callégg, and a 2D
particles are first cooled to the ground state of the lattic@Psorption image of the atom cloud is takersthus with
potential [6,7] and from this state the= 1 Fock state & horizontal beam [8].
has previously been produced [8]. Here we first present A particle in a harmonic potential is described by the
the production of squeezed states of motion by a veryilamiltonian H = (p*> + z%)/2 taking units such that
simple technique. The width of the velocity distribution woe = i = m = 1. It is equivalent toH = afa + 3
of the squeezed state oscillates between a minimum valugith p = %i(a —at) andz = %(a + af). In anal-
much smaller than the standard quantum limit and &gy with squeezed states of light [9], squeezing of motion
maximum value corresponding to the antisqueezing phasemounts to reducing.s belowzy or p.,s below pg. The
in agreement with calculation. Finally, we display the timemethods proposed so far to generate motional squeezed
evolution of a linear superposition of =0 andn =1  states use either parametric drive of the potential or
states as well as that of a coherent state. sudden drop of the potential [10,11]. The former one was

In our experiments, Cs atoms are confined in a dipoleachieved in ion experiments [2] and wave packet com-
trap which consists of two 5 W YAG laser beams hav-pression in the classical regima{ > zo) was observed
ing 180(20) um waists, parallel linear polarizations, and in an optical lattice in [12]. Here squeezed states are
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generated just by switching off and on the dipole potential
(YAG beams). This follows the suggestion of Ref. [13]
athough its quantum aspect was not realized then.
(@) Atoms are cooled to the vibrational ground state,
(b) the potential is switched off for atime 7, and (c) the
potential is switched on again for a time r,. Balistic
expansion images are recorded for variable 7.

A simple picture of the method is given by the time
evolution of the Wigner distribution W(z, p) presented in
Fig. 1. In aharmonic potential and in free space the time
evolution of W(z, p) isidentical to the classical evolution
of a phase space distribution. (a) For the ground state (an
energy eigenstate), W(z, p) is round and unchanged under
time evolution (rotation with angular frequency wesc).
(b) When the potential is turned off, the upper part of the
distribution moves to the right because it has a positive
momentum, while the lower part moves to the left.
The acceleration and displacement of the atoms due to
gravity during the time 7, are negligible. The distribution
becomes elliptic. (c) As the potential is turned on again,
the Wigner function rotates at w.s.. For a particular 7,
the momentum distribution is squeezed while the position
distribution is antisqueezed. A quarter period later the
situation is reversed. Because the area in phase space
is conserved during the time evolution, the product of
the lengths of the two principal axes of the elipse is
conserved. In particular, at the squeezed and antisqueezed
instants, the principal axes of the ellipse coincide with the
z, p axes and we have AzAp = /2. Figure 2(a) shows
an absorption image of the trap. Figure 2(b) presents
a BE image with Tgg = 14.5 ms of the n = 0 dtate
prepared by Raman sideband cooling [8]. It corresponds
to pmms/m = 11(1) mm/s in good agreement with the
calculated vaue (11 mm/s). With such long Tgg, this
picture is essentially the velocity distribution of the
atoms. After a squeezing sequence with 1 = 8 us, and
7, = 0.4 us chosen so that atoms are most squeezed in
momentum space, the vertical size of the atomic cloud
after BE is strongly reduced [Fig. 2(c)]. A fit with a
Gaussian gives an rms width z. The velocity width,
calculated with a deconvolution with the initial size of
the cloud, is 4 times smaller than that of the ground state,

Vrms — \[Zz - thrap/TBE =27 mm/s = %(po/m)
A set of BE absorption images for various 7, displays
the time evolution of the momentum spread aong z
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FIG. 1. Experimental time sequence and evolution of the
phase space distribution.
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(Fig. 3 circles). Severa oscillations between sgueezed
and antisgueezed phases can be seen, as well as a damping
which we shall discuss later.

We next apply the squeezing sequence to the |n =
1) Fock state produced as in [8]. The momentum
distribution of |n = 1) consists in two peaks separated
by 2+/2 po. After the squeezing sequence, the momentum
distribution keeps the same shape while breathing in time
(Fig. 4). For therather short Tgg delay in Fig. 4 (4.8 ms),
the two peaks of the modulus of the wave function are
not resolved at the maximum squeezing phases (7, ~ 0.8,
6.4, and 12.8 us) because of the finite initia cloud
size. At the antisgqueezed phases the two peaks are well
resolved (7, ~ 3.2 and 8.8 uS) and their separation is
2.7 X 2+/2 po.

Quantitative comparison with theory proceeds as fol-
lows. The Hamiltonian is

Hon = %(172 + ) =ata+ % , [YAGON: (a),(c)],
Horr =5 p?, [YAG OFF: (b)]. o

U = exp(—iHonT2) eXp(—iHorrT;) being the time
evolution operator, the time evolved annihilation operator
a' = UaU?' obeys

a =UvaUt =&z + ¢p, ()

where

{g = %[cosn + (i — 71)sin7], @)

[ = %[—sinrz + (i — 71)cosr;].

Starting from the state |n = 0), the state of the atoms
after the squeezing sequence |0) = U|0) obeys

a'l0’y = Ualn = 0y = 0. 4

From (2) and (4), the wave function in p representation
Yo(p) = {p | 0') obeys the differential equation

(igd, + {p)po(p) = 0. (5)

Solving this equation gives o(p) = ye *P"/2 with
a = —il /& and the momentum uncertainty

1
Ap?2 = —— = 2[&?
P"= Rea 2l

2 2
— 1+ %1 — 1 + 7;‘—lcos(zrz - @), (6)

where ¢ = tan™! T% [14].

Equation (6) reproduces qualitatively the experimental
results (Fig. 3) but does not explain the damping which
we understand as follows. The vertical oscillation fre-
guency depends on the position in the trap and the spread
of wese 1S 10%. This gives different rotation speeds in
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FIG. 2. Absorption image of the Cs dipole trap (a). Images with 14.5 ms ballistic expansion for atoms in the ground state [n = 0)
(b), and in a squeezed state obtained with 7y = 8 and 7, = 0.4 us(c). From these images, a momentum squeezing factor of 4 is

deduced (pims/m = 2.7 mm/s = ipo/m). The transverse temperature of the sample is 7 uK (vims = 21 mm/s).

phase space in the 2nd ON time [Fig. 1(c)] and thus
provides damping. The calculation including this effect
reproduces reasonably well the observed damping in
Fig. 3[15].

As a second example of quantum state engineering,
we demonstrate now the generation of a coherent su-
perposition of the ground state [ = 0) and the first ex-
cited state |[n = 1) of motion in the harmonic microtraps.
Atoms in |F = 3,n = 0) are transferred into F = 4 by
a short Raman pulse of duration 7 = 11 wstuned in be-
tween thetwo transitions |F = 3,n = 0) — |F = 4,n =
0)and |F =3,n =0)— |F =4,n = 1). Nonresonant
transfer to |n = 2) is negligible because the |n = 0) —
|n = 2) coupling is reduced by afactor of 2¢/2 5% = 0.07
with respect to the [n = 0) — |n = 0) coupling. Be-
cause atoms transferred into |F = 4,n = 1) are further
coupled to |F = 3,n = 1), then to |F = 4,n = 2), and
so on, we use a weak pulse which transfers only about
half of the atoms into F = 4 so that the population in
F=4,n=273,..., remans negligible. The ratio be-
tween the populations transferredinrn = 1 and n = 0 de-
pends on the detuning of the Raman pulse. It is small
if the pulse is resonant with the transition |F = 3,n =
0) — |F = 4,n = 0) because n is smal, and is increas-
ing as the pulseis tuned nearer the transition |[F = 3,n =
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FIG. 3. Time evolution of the momentum spread of |n = 0)
squeezed state, in units of the rms width p, of [n = 0). Circles:
experimental points. Dot-dashed line:  Calculated evolution
given by (6). Solid line: Calculation taking into account the
spread of oscillation frequencies in the lattice wells.

0) — |F = 4,n = 1). Choosing a detuning which equal-
izes the two populations, the wave function of atoms in
F = 4isthen|¢) = (|0) + ¢'?|1))/V/2. After the prepa-
ration pulse, the phase difference between these two states
evolves in time as w,t leading to a periodic oscillation
of the velocity distribution [Fig. 5(b)]. This evolution is
obviously nonclassical and contrasts with that of a coher-
ent state which oscillates as a classical particle without
deformation.

The velocity distribution of atoms in F = 4 at vari-
able time ¢ after the Raman pulse is measured by BE with
Tse = 8 ms [Fig. 5(c)]. This evolution reproduces rea
sonably well the expected one [Fig. 5(b)]. We attribute
the weaker contrast in the experimental data to the spread
of initial positionsin thetrap. The expected relative phase
¢ at the end of the Raman pulse [Fig. 5(b) lower trace] is
do + wosc T/2. Here ¢y is the phase for which the ex-
pectation value of the momentum is maximum in the di-
rection of the Raman kick fi(k, — k,). k, (respectively,
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FIG. 4. Time evolution of the squeezed |n = 1) Fock state
obtained with 71 = 4 us. Series of cuts along z are taken

from the BE absorption images.
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FIG. 5. (a) Wave functions in momentum representation of
the states |n = 0) and |n = 1). The momentum unit is the
rms ground state width py. (b) The calculated evolution
of the momentum distribution [¢(p)|*> of the superposition
) = (In = 0) + ¢®|n = 1))/+/2. () The measured time
evolution of the velocity distribution of the superposition state.
The time origin is the end of the Raman pulse. (d) Measured
time evolution of the coherent state |« = 0.28).

k,) is the wave vector of the higher (respectively, lower)
frequency beam. The initial phase of the measured data
[Fig. 5(c)] isin good agreement with this prediction.

If we apply a pulse much shorter than the oscillation
period, the atoms have no time to oscillate during the
pulse. They behave as free atoms and the wave function
transferred in F = 4 is displaced in velocity space by
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2hk/m = 7.0 mm/s. If the atoms are initidly in the
ground state, the produced state is a coherent state. Be-
cause of alack of power in the Raman beams, we rather
used apulse of 11 us. This pulseis not very short com-
pared to the oscillation period but it still produces a good
approximation of a small amplitude coherent state. The
pulse istuned to the |[F = 3,n = 0) — |F = 4,n = 0)
transition. The population transferred in n = 1 is small
and those of n = 2,3,..., are negligible. The state
is then |0) + «|1), close to the coherent state |a) =
e 12P2[10) + a|1) + (a?/+/2)]2) + ...]. The measured
velocity distribution of this state [Fig. 5(d)] oscillates in
time while remaining Gaussian as expected. The maxi-
mum velocity change is =4.5 mm/s = 0.62 X 2hk/m,
corresponding to the coherent state | = 0.28).

In summary we have prepared various quantum super-
position states and observed the time evolution of their
momentum distribution. Further work will rely on popu-
lating a single lattice well so that the decoherence of these
states will not be masked by the inhomogeneous broad-
ening of oscillation frequencies. Coherence time of the
order of 0.1 s is expected in our system. Extension of
this work to two and three dimensions is also straight-
forward. Finally macroscopic quantum systems such as
Bose-Einstein condensates will reveal interesting new ef-
fects when coupled to nondissipative optical lattices [16].
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