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Contribution of Nucleon-Nucleon P Waves to nt-nt, dd-pt,
and dd-dd Scattering Observables
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The four-body equations of Alt, Grassberger, and Sandhas [Phys. Rev. C 1, 85 (1970)] are solved
for a system of four nucleons, using realistic NN interactions in channels j # 2. The results of the
calculation are compared with data for the reactions dd ! dd, dd ! p3H, and n3H ! n3H. The
calculations indicate that the NN P waves have a strong effect on 4N observables including a 10%
contribution to the total n3H ! n3H cross section at the peak of the low energy resonance.

PACS numbers: 21.45.+v, 13.75.Cs, 25.10.+s
In a recent review article on the three-nucleon con-
tinuum [1] one finds that 1H� �d, d�1H elastic observables
(cross sections, vector, and tensor polarizations) are in-
sensitive to the choice of realistic NN potential. Beyond
the persistent Ay discrepancy at low energy, the agree-
ment between calculations and data is excellent in the
energy range up to 65 MeV. They also report that the
Ay discrepancy at low energy persists even when known
static 3N force models are added to any realistic 2N in-
teraction. The same conclusion is reached by others [2],
where the NN interaction is modified by the coupling NN-
ND. No matter what approach one follows to add a 3N
force in the 3N system, the outcome is similar: beyond its
effect on the 3N binding energy (about 1 MeV more bind-
ing), triton wave function related parameters (charge radii,
asymptotic normalization constants), and doublet scatter-
ing length, all of which correlate almost linearly with the
triton binding energy, the 3N force plays almost no role
in d 1 p elastic scattering or breakup for deuteron labo-
ratory energies up to Ed � 65 MeV. This low energy
behavior, though predicted by a few authors [3] 30 years
ago, was confirmed in the last 10 years by the very accu-
rate calculations of the Bochum and Pisa groups. Unlike
d 1 N scattering, the triton is very sensitive to the choice
of 2N or 2N 1 3N interaction. Therefore 3H� �n, n�3H or
d� �d, p�3H observables may show greater dependence on
force models than 1H� �d, d�1H.

Recent calculations of the four-nucleon system exist
for the binding energy of the a particle [4], p 3He and
n 3H scattering length [5] which may be considered of the
same accuracy and sophistication as encountered in the
3N system. At higher energies, but still below three-body
breakup threshold, there is the work of the Grenoble group
[6] which calculates the cross section for 3H�n, n�3H using
Malfliet-Tjon (MT) and Argonne V14 (AV14) potentials
in channels 1S0 and 3S1-3D1. Because their calculation
carries no approximations, beyond a limitation on the
NN partial waves included or number of channels, the
conclusions are very disturbing. They claim that, unlike
MT, the realistic interaction (AV14) fails to describe the
neutron-triton (n-t) total cross section at the peak of the
0031-9007�99�83(20)�4021(4)$15.00
resonance (En � 3.5 MeV) and preliminary results on the
importance of NN P waves or a 3N force seem to indicate
that they have almost no effect on the cross section at this
energy; while the combined effect of 1P1, 3P0, and 3P1
interactions decrease the total cross section at the peak,
adding 3P2-3F2 raises it to only about its original value in
the absence of NN P waves. Given that low energy n-t
elastic scattering is the simplest 4N reaction, such failure,
if confirmed, would have significant implications in few-
nucleon physics in general and on the nature of 2N force
models in particular.

Therefore in the present work we attempt to clarify this
issue, in addition to the presentation of the most complete
calculation that we know of, for the 4N tensor observ-
ables in 2H� �d, d�2H, 2H� �d, p�3H, and 3H� �n, n�3H below
four-body breakup threshold in order to identify possi-
ble failures that may shed light on the NN interaction one
uses, and study the effect of NN P waves. Previous calcu-
lations of these observables involve either a combination
of perturbation theory coupled with the solution of the 4N
equations for the dominant partial waves [7] or the use
of a limited number of channels at energies close to the
d 1 d threshold [8].

The starting point involves the solution of Alt, Grass-
berger, and Sandhas (AGS) equations [9] for the transi-
tion operators involving all �2N� 1 �2N� and N 1 �3N�
channels. For local NN potentials such equations are
three-vector variable integral equations which after par-
tial wave decomposition reduce to a set of coupled equa-
tions in three continuous scalar variables. Since scattering
calculations require a great number of channels for con-
vergence, we follow an approach based on the separable
representation of subsystem amplitudes in order to reduce
the equations to two or one continuous variable. The in-
tegral equations we use are the same as in Ref. [10] and
result from the modified AGS equations [11] after one
has (a) represented the original NN t matrix by an oper-
ator of rank one and (b) represented the resulting 3N t
matrix by a finite rank operator and taken as many terms
as needed for convergence. Since in the modified AGS
equations the 2N 1 2N subamplitudes are expressed in
© 1999 The American Physical Society 4021
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terms of a convolution integral involving two noninter-
acting pair propagators, as first proposed in Ref. [12], the
sole approximation in this approach involves a rank one
representation of the 2N t matrix which may be obtained
from the well-known method of Ernst, Shakin, and Thaler
(EST) [13]. The multiterm representation of the 3N t ma-
trix is done using the energy dependent pole expansion
(EDPE) method developed in Ref. [14]. This latter rep-
resentation for the 3N t matrix is well under control since
one may check the convergence rate of 4N observables for
increasing rank in the 3N t matrix.

This method was first used in Ref. [10] to calculate
the binding energy of 4He and later confirmed to be
accurate by the exact work of Kamada and Glöckle
[15]. More recently [16] the results of our calculations
for n-t elastic scattering were shown to agree with the
exact results of the Grenoble group [6], for both MT
and AV14 potentials taken in 2N partial waves with
j # 11 (1S0, 3S1-3D1). This benchmark was performed
in the energy range 0 # En , 7 MeV and shows that
both works agree within 3% or better. In addition, at
Ed � 3 MeV, d-n elastic observables calculated with the
rank one EST representation of the 2N t matrix are in very
good agreement with the exact results; the differential
cross sections agree within 1%, and the tensor observables
T20, T21, and T22 within 10% or better over a broad
angular range. Only iT11 is reduced by 30% at the
peak. Therefore, in the energy region below four-body
breakup threshold, we expect the rank one approximation
to account for the dominant physics.

The four-nucleon calculations we present here make
use of the Bonn-B and Argonne V14 potentials in
channels 1S0, 3S1-3D1, 1P1, 3P0, 3P1, and 3P2. The first
two channels correspond to including all 2N partial waves
with j # 11, while the first five channels to j # 1.
The Coulomb repulsion between protons is neglected.
Independently of the number of 2N partial waves that
are included for a given NN interaction, one needs to
set upper limits for given subsystem quantum numbers
in order to reach a converged 4N result. In particular one
has to decide the largest 3N total angular momentum J
to be included and the rank of the corresponding EDPE
expansion. Since preliminary work was first presented
in Ref. [17], we do not show here how the 4N results
converge with the rank “r” in the EDPE expansion of the
3N t matrix nor with the number of 3N subamplitudes
for increasing 3N total angular momentum J. In general
we take all 3N subamplitudes up to 7�21 for 3N total
isospin I � 1�2 and up to 5�21 for isospin I � 3�2.
For a given (J, I) the resulting 3N subamplitude is
calculated using all underlying 3N channels with N-(2N)
orbital angular momentum L # 3 and rank r equals 6
for I � 1�2 amplitudes and 4 for I � 3�2. As expected
I � 3�2 3N subamplitudes contribute only to isospin
I � 1 4N reactions such as 3H�n, n�3H. Finally in all
I � 1�I � 0� calculations we solve AGS equations for
each 4N total angular momentum J # 3 �J # 6� in
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all corresponding N 1 �3N� and �2N� 1 �2N� channels
with relative orbital angular momentum L # 3 �L #

5�. The above limits for 3N and 4N channels are less
restrictive than those used in Ref. [6] and for this reason
we expect this work to be fully converged on all relevant
angular momentum channels and subchannels.

In Fig. 1 we show the new results for the total cross
section for n-t elastic scattering obtained with Bonn-B
potential. The long dashed line corresponds to including
NN partial waves with j # 11 while the solid curve to
a calculation that carries all NN partial waves up to 3P2
(all j # 1 plus 3P2). For comparison we show the results
obtained with AV14 for j # 11 (dash-dotted line) which,
as mentioned above, coincide with the work of Ref. [6]
within 3%. At threshold energies the Bonn-B and AV14
results shown in Fig. 1 deviate from data. This comes
from having the wrong triton binding energy (8.28 MeV
for Bonn-B and 7.64 MeV for AV14) but this discrepancy
is considerably smaller for Bonn-B than for AV14 as the
well known correlation [5] between triton binding energy
and n-t scattering length (triplet and singlet) predicts. At
higher energies the calculation shows that the NN P waves,
unlike in Ref. [6], are responsible for a 10% increase in the
total n-t cross section at the peak of the resonance, leading
to a reasonable description of the data. To save computing
time we have added NN P waves to the AV14 calculation at
En � 3.5 MeV alone. The corresponding result is shown
by the triangle in Fig. 1. As in Ref. [6] we also find that
the total cross section decreases when the NN P waves are
restricted to 1P1, 3P0, and 3P1 (see diamond in Fig. 1),
but adding 3P2 produces a remarkable increase in the cross
section. These results reverse the findings of Ref. [6] and
show that NN P waves not only have a strong effect in n-t
elastic observables, but also that both AV14 and Bonn-B
are able to describe the total n-t cross section at the peak.
This may be rationalized in the following manner: as we
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FIG. 1. Total neutron-triton elastic cross section versus en-
ergy for both Bonn-B and AV14 potentials. The crosses are
experimental points from Ref. [18].
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know from 3N physics, 1H� �d, d�1H spin observables are
strongly dependent on the NN P waves, even at low energy
Ed , 3 MeV; most of this dependence comes through the
odd parity 3N amplitudes J2 which, as we know from
very early work on the four-nucleon system [19], make
up for 50% of the total n-t cross section. This is again
shown in Fig. 1 by the dashed line which corresponds to
a calculation with Bonn-B potential in channels j # 11

but where the 3N subamplitudes included are restricted to
J1. Therefore we claim that the J2 3N subamplitudes,
once embedded in the 4N system, act as a magnifier for
the NN P waves, leading to a 10% increase of the total
cross section. Given that the NN P waves have almost no
effect in low energy d-N cross sections and less than a
1% contribution to the triton binding, this 10% rise of the
total n-t cross section is a remarkable result in low energy
few-nucleon physics that may bring new hope to studies
of 3N force effects in this energy region; static 3N forces
give rise to NN P wave components whose contribution
to 4N scattering may also be magnified through J2 3N
subamplitudes.

In addition to the total cross section we show in
Fig. 2 the differential cross section at En � 3.5 MeV
and 6 MeV, together with the analyzing power Ay at
En � 5.54 MeV and 10.01 MeV. Since Ay comes from
p-3He data we have added the two-body Coulomb ampli-
tude to the nuclear amplitude multiplied by the Coulomb
phases. Although the differential cross section is in
reasonable agreement with data, once the NN P waves are
included (solid curves), the Ay is still too low and shows
the same type of disagreement with data as one has seen
before in 2H� �n, n�2H. The effect of the NN P waves on
n-t partial waves is centered on 3P0 and 3P2 phases which
rise relative to their values in the absence of NN P waves.
The remaining discrepancy in Ay may come from higher
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FIG. 2. Angular distributions corresponding to the differential
cross sections for 3H�n, n�3H (left) and analyzing powers Ay

for 3He� �p, p�3He (right). The experimental points are from
Ref. [20] (full circles and squares), Ref. [21], (crosses), and
Ref. [22] (open squares).
partial waves in the NN interaction or missing 3N force,
but may also be due to uncertainties in the strength of the
3Pj partial waves, as discussed in the work of Tornow
et al. [23]. To investigate this issue we modify the 3Pj

strength according to their prescription and show the new
results in Fig. 2 (dash-dotted lines). The new curves
show that �n-t Ay is also sensitive to changes in 3Pj partial
waves, leading to a marginal improvement relative to
experiment, but also an undesirable increase of 5% in the
total cross section at this energy. Even if this prescription
could explain the Ay discrepancy in the 3N continuum, it
would leave open the solution of the Ay problem in n-t
scattering.

Finally in Figs. 3 and 4 we show the predictions of our
calculations for 2H� �d, d�2H and 2H� �d, p�3H tensor observ-
ables. All calculations were performed with Bonn-B; the
long-dashed line corresponds to j # 11, the dashed line
to j # 1 1 3P2, and the solid line to j # 2. To compare
with data all nuclear amplitudes were multiplied by the
appropriate Coulomb phases and in the case of dd ! dd
the Coulomb amplitude was also added. Since the num-
ber of 3N channels grows as additional NN partial waves
are included, convergence requirements preclude that the
rank r of the EDPE expansion of 3N subamplitudes has to
increase. Given our limitations in computing power, we
are restricted to r � 8 for all 3N J up to 7�21. There-
fore j # 2 results, unlike the others, may not be fully
converged. This shortcoming is more evident in dd ! dd
observables where the small size of the tensor analyzing
powers results from cancellations between large ampli-
tudes. The results are very interesting because they show
the importance of NN P waves in the tensor observables
for both reactions, as well as the contribution from higher
partial waves; in addition one gets the correct order of mag-
nitude for the observables in both reactions. Nevertheless
the results are also disturbing because one finds that higher
partial waves, other than 1S0 and 3S1-3D1, change the
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FIG. 3. dd-dd tensor analyzing powers at Ed � 6.1 MeV for
Bonn-B potential. The experimental points are from Ref. [24].
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FIG. 4. Same as in Fig. 3 for dd-p3H.

magnitude of the calculated observables but do not change
the shape as much as required by the data; some observ-
ables are reasonably well described by the calculation,
while others remain poorly reproduced. To attribute such
deviations from data to the use, in this work, of the rank
one EST representation of the 2N t matrix is, in our view,
too simple a way out. Higher order terms may modify the
representation of the interaction and consequently intro-
duce changes in the calculation, but we do not expect them
to alter substantially the present shape of the calculated ob-
servables. In Ref. [17] we tried different potentials (Paris,
AV14, Bonn-A), limited to j , 11 partial waves, to test
the sensitivity of the observables to different off-shell be-
havior of the NN interaction, but only a 10% change on the
magnitude was observed without any modification of the
shape. From experience with p-d versus n-d scattering
observables [25], proper treatment of the Coulomb force
may also introduce small changes in the magnitude of the
tensor observables but not large corrections to their shape.

In the present work we have calculated the total n-t
cross section and reversed the conclusion of Ref. [6]
vis-à-vis the contribution of NN P waves at the peak
of the total cross section. The difference between the
results of Ref. [6] and this work may be due to channel
restrictions in Ref. [6] not included in this work, or to a
more subtle reason not yet understood. Unlike in Ref. [6]
we find the contribution of NN P waves to be about 10%
of the n-t cross section at En � 3.5 MeV for both Bonn-
B and AV14 potentials. In spite of this success that is also
extensive to the differential cross sections for 3H� �n, n�3H,
we fail to reproduce Ay much like what one finds in
2H� �n, n�2H. Modification in the 3Pj strength according
to the prescription by Tornow et al. [23] improves the
agreement with data as in �n-d Ay . The same equations
are applied to study 2H� �d, d�2H and 2H� �d, p�3H tensor
observables at 6.1 MeV. Although some observables
are well described by the calculation others show large
disagreement relative to the data. If these findings are
4024
confirmed by others, one may be confronted with a
situation where either existing 3N force models are able to
correct for the present discrepancies and thus show their
importance in low energy few-nucleon scattering, or one
faces a serious challenge that may urge the development
of new 2N 1 3N force models.
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