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Huge back-to-back correlations are shown to arise for thermal ensembles of bosonic states
medium-modified masses. The effect is experimentally observable in high energy heavy ion collis
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Introduction.—The Hanbury Brown–Twiss (HBT) or
Goldhaber-Goldhaber-Lee-Pais (GGLP) effect [1,2]
widely used in heavy ion physics to measure the spac
time geometry of such reactions. The enhanced cor
lations of bosons in outgoing states with small relativ
momentum provide a Fourier transformed picture of th
system at freeze-out. The scales measured by the H
effect coincide with the lengths of homogeneity [3].

In this Letter, we consider the effect of possible mas
shifts in the dense medium on two boson correlations
general. Thus far medium modifications of hadron mass
have been mainly considered in terms of effects on su
observables as dilepton yields and spectra. Hadron m
shifts are caused by interactions in a dense medium a
therefore vanish on the freeze-out surface. Thus, a na
first expectation is that in-medium hadron-modification
may have little or no effect on two boson correlations, an
so the usual HBT effect has been expected to be concer
with only the geometry and matter flow gradients on th
freeze-out surface. However, in this Letter, we show th
an interesting quantum mechanical correlation is induc
due to the fact that medium modified bosons can be rep
sented in terms of two-mode squeezed states of the asym
totic bosons, which are observables. As a by-product, w
solve the finite-size problem for two-mode squeezing, b
formulating the theory of intensity interferometry for a fi-
nite, inhomogeneous, squeezed, and expanding medi
which is a new result also for quantum optics [4].

In this Letter, we assume the validity of relativistic
hydrodynamics up to freeze-out. The local temperatu
T �x�, chemical potentialm�x�, and flow fields um�x�,
are given, for example, by those taken from Ref. [5
In relativistic heavy ion collisions, it has been observe
that the one particle spectra can be described by therm
distribution fairly well [6]. We assume that the sudde
(nonadiabatic) approximation is a valid abstraction i
describing the freeze-out process in relativistic heavy io
collisions quantum mechanically [7] and that there exis
an abrupt freeze-out surface,Sm�x�. However, the effects
of fluctuations of that freeze-out process will also b
considered below.

Consider the following model Hamiltonian,
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H � H0 2
1
2

Z
dxdyf�x�dM2�x 2 y�f�y� , (1)

H0 �
1
2

Z
dx� �f2 1 j=fj2 1 m2

0f2� , (2)

whereH0 is the asymptotic Hamiltonian, in the rest frame
of matter. The scalar fieldf�x� in the Hamiltonian
H corresponds to quasiparticles that propagate with
momentum-dependent medium-modified effective mass
which is related to the vacuum mass,m0, via

m2
��jkj� � m2

0 2 dM2�jkj� .

The mass shift is assumed to be limited to long
wavelength collective modes:dM2�jkj� ø m2

0 if
jkj . Ls.

We are interested in the invariant single-particle and
two-particle momentum distributions:

N1�k1� � vk1

d3N
dk1

� vk1 �a
y
k1

ak1� , (3)

N2�k1, k2� � vk1vk2�a
y
k1

a
y
k2

ak2ak1� , (4)

�ay
k1

a
y
k2

ak2ak1 � � �ay
k1

ak1� �ay
k2

ak2� 1 �ay
k1

ak2� �ay
k2

ak1�

1 �ay
k1

a
y
k2

� �ak2ak1� , (5)

where ak is the annihilation operator for the asymp-
totic quantum with four-momentumkm � �vk, k�,
v

2
k � m2

0 1 k2 �vk . 0�, and the expectation value
of an operatorÔ is given with the density matrixr̂
as �Ô� � Trr̂Ô. Equation (5) has been derived as a
generalization of Wick’s theorem forlocally equilibrated
(chaotic) systems in Refs. [3,8,9].

In order to simplify notation, we introduce the chaotic
and squeezed amplitudes, defined, respectively, as

Gc�1, 2� �
p

vk1vk2 �ay
k1

ak2� , (6)

Gs�1, 2� �
p

vk1vk2 �ak1ak2� . (7)

Usually, the chaotic amplitude,Gc�1, 2� � G�1, 2� is
dominant, and carries the Bose-Einstein correlations
© 1999 The American Physical Society 4013
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while the squeezed amplitude, Gs�1, 2� vanishes:

C2�k1, k2� �
N2�k1, k2�

N1�k1�N1�k2�
� 1 1

jG�1, 2�j2

G�1, 1�G�2, 2�
.

(8)

The exact value of the intercept, C2�k, k� � 2, is a
characteristic signature of a chaotic Bose gas without
dynamical 2-body correlations outside the domain of
Bose-Einstein condensation [10].

For a hydrodynamic ensemble, Eq. (6) reduces to the
special form derived by Makhlin and Sinyukov [3],

G�1, 2� �
1

�2p�3

Z
d3SmK

m
1,2eiq1,2?xn�x, K1,2� . (9)

Note that the relative and average pair momentum coor-
dinates, q0

1,2 � v1 2 v2, q1,2 � k1 2 k2, and K1,2 �
1
2 �k1 1 k2�, appear in (9). These variables arise natu-
rally whenever the Wigner operator is used, even in
totally nonequilibrium semiclassical limits [11]. The
validity of the approximations leading to (9) requires the
width of G�1, 2� as a function of the relative momen-
tum, q � jq1,2j, to be small. That width is given by
�1�R, where R is a characteristic dimension of the sys-
tem. The semiclassical limit corresponds to KR ¿ 1,
where K is jK1,2j. Note that

p
vk1vk2 � K0

1,2 in this case.
For qR , 1, the second term in (5) describes the minimal
quantum interference associated with the indistinguisha-
bility of the bosons. The integration over the freeze-out
surface, Sm�x�, is implemented with the invariant mea-
sure d3SmK

m
1,2 that reduces to K0d3x in the case of a

constant freeze-out time.
Results for a homogeneous system.—The terms ne-

glected in (8) involving Gs�1, 2� become nonnegligible
when mass shift becomes nonvanishing, i.e., dM2�jkj� fi

0. Given such a mass shift, the dispersion relation is
modified to V

2
k � v

2
k 2 dM2�jkj�, where Vk is the fre-

quency of the in-medium mode with momentum k. The
annihilation operator for the in-medium quasiparticle with
momentum k, bk, and that of the asymptotic field, ak, are
related by a Bogoliubov transformation [12]:

ak1 � ck1bk1 1 s�
2k1

b2k1 � C1 1 S21 , (10)

where ck � cosh�rk	, sk � sinh�rk	, and rk is given by

rk �
1
2

log�vk�Vk� . (11)

We introduce the shorthand, C1 and S
y
21, to simplify later

notation. As is well known, the Bogoliubov transforma-
tion is equivalent to a squeezing operation, and so we call
rk the mode dependent squeezing parameter. While it is
the a quanta that are observed, it is the b quanta that are
thermalized in medium. Thus, we consider the thermal
average for a globally thermalized gas of the b quanta,
that is homogeneous in volume V :

r̂ �
1
Z

exp

√
2

1
T

V
�2p�3

Z
dk Vk b

y
kbk

!
. (12)
4014
When this thermal average is applied,

Gc�1, 2� �
p

vk1vk2 ��Cy
1 C2� 1 �S21S

y
22�	 , (13)

Gs�1, 2� �
p

vk1vk2 ��Sy
21C2� 1 �C1S

y
22�	 . (14)

If this thermal b gas freezes out suddenly at some time at
temperature T , the observed single a-particle distribution
takes the following form:

N1�k� �
V

�2p�3 vk n1�k� , (15)

n1�k� � jckj
2nk 1 js2kj

2�n2k 1 1� , (16)

nk �
1

exp�Vk�T � 2 1
. (17)

This spectrum includes a squeezed vacuum contribution in
addition to the mass modified thermal spectrum. Its shape,
however, remains essentially that of the conventional ther-
mal distribution. Although the squeezed vacuum contri-
bution results in a slowly decaying power-law tail of the
single-particle spectra, this power-law tail arises for typical
values of mass shifts and temperatures at high transverse
momentum only, e.g., above jkj . 1 GeV, where the lo-
cal hydrodynamic description breaks down and correlated
perturbative QCD (minijets) starts to play a dominant role.
We emphasize that the spectra and correlation functions
should be described by the same set of model parameters,
and any signal found in the correlation function could be
cross checked against its contribution to N1�k�.

In the homogeneous limiting case, Gc�1, 2� ~ Vd1,2,
while Gs�1, 2� ~ Vd1,22. The resulting two-particle cor-
relation function is therefore unity except for the parallel
and antiparallel cases:

C2�k, k� � 2 , (18)

C2�k, 2k� � 1 1
jc�

ksknk 1 c�
2ks2k�n2k 1 1�j2

n1�k� n1�2k�
.

(19)

The dynamical correlation due to the two-mode squeezing
associated with mass shifts is therefore back-to-back as
first pointed out in [12]. The HBT correlation intercept
remains 2 for identical momenta. Evaluating Eq. (19) for
T � 140 MeV, jkj � 0, 300 or 500 MeV for f mesons,
as a function of the medium modified m�

f, one finds
back-to-back correlations (BBC) as big as 100–1000 for
reasonable values of m�

f.
It follows from Eq. (19) that the BBC are unbounded

from above, 1 # C2�k, 2k� , `. As jkj ! `, C2�k,
2k� 
 1 1 1�js2kj

2 
 1 1 1�n1�k� ! `. Hence at
large values of k, particle production is dominated by
that of back-to-back correlated pairs for any nonvanishing
value of in-medium mass shifts. This huge enhancement
renders our effect measurable. This prediction has to be
contrasted to the results of Ref. [7], which predicted large
values for the HBT correlations, C�k, k� as a consequence
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of an incorrect Bogoliubov transformation. Reference [9]
discussed a different kind of back-to-back correlation,
the particle-antiparticle correlation (PAC), which is
based on a classical current formalism, and showed
C

�PAC�
2 �k, 2k� # 3. However, their upper limit was

shown to be reachable for massless quanta at jkj � 0 only.
For massive final-state bosons and for any realistic finite
duration of particle emission, the effects found in Ref. [9]
are suppressed by at least 2–3 orders of magnitude,
resulting in an unmeasurably small effect. In contrast, we
consider here an entirely quantum effect, which cannot be
obtained in classical current formalism. The unlimited
strength of the back-to-back correlations of mass-shifted
mesons in our case results in a measurable effect even if
the decay of the medium is not completely sudden and
orders of magnitude suppressions reduce its strength.

Suppression by finite emission times.—To describe a
more gradual freeze-out, the probability distribution F�ti�
of the decay times ti is introduced. [The sudden ap-
proximation is recovered in the F�ti� � d�ti 2 t0� lim-
iting case.] The time evolution of ak�t� will be ak�t� �
ak�ti� exp�2ivk�t 2 ti�	, which leads to

C2�k, 2k� 2 1 �
jc�

ksknk 1 c�
2ks2k�n2k 1 1�j2

n1�k� n1�2k�

3 jF̃�vk 1 v2k�j2, (20)

where F̃�v� �
R

dtF�t� exp�2ivt�. For a typical ex-
ponential decay, F�t� � u�t 2 t0�G exp�2G�t 2 t0�	, the
suppression factor is

jF̃�vk 1 v2k�j2 � 1��1 1 �vk 1 v2k�2�G2	 .

In the adiabatic limit, G ! 0, this factor suppresses com-
pletely the BBC, while in the sudden approximation, G !
`, the full BBC are preserved. For dt � h̄�G � 2 fm�c,
and for BBC of f mesons with v � 1 2 GeV, one finds
that the BBC are suppressed by a factor of �1023. As
shown in Fig. 1, the BBC survive this large suppres-
sion with a measurable strength, as large as 2–3, the
scale of HBT correlations. This emphasizes the enormous
strength of squeezed BBC for mass-shifted bosons.

Results for inhomogeneous systems.—Following
Ref. [3], we divide the inhomogeneous fluid into inde-
pendent cells labeled i and assume

r̂ �
Y

i

r̂i �
Y

i

1
Zi

exp�2�Hi 2 miÑi��Ti	 , (21)

where r̂i is the local thermal density matrix of cell i at the
decoupling time ti , and Ñi is the local number operator
of b quanta. The hydrodynamic limit applies only if the
cells are small compared to the scale of change of the
temperature, flow, and chemical potential fields, however,
they are big enough so that one can apply quantization and
statistics cell-by-cell. The validity of hydrodynamics in
heavy ion collisions is not obvious, but must be checked
1
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FIG. 1. Dependence of the back-to-back correlations (BBC)
on the medium modified f meson mass, m�

f, for T �
140 MeV and m � 0, where solid, dashed, and dotted lines
stand for jkj � 0, 300, and 500 MeV, respectively. The mag-
nitude of the BBC is large in spite of the finite time suppression
factor 1��1 1 �2dtvk�2	 � 0.001, for dt � 2 fm�c.

in each reaction through the consistency with both single
and double inclusive spectra. In each cell, the field can
be expanded with creation and annihilation operators, and
Hi is diagonalized by a local Bogoliubov transformation.
The amplitudes (13) and (14) can be evaluated assuming
that the b quanta satisfy locally a generalized Eq. (10):

Gc�1, 2� �
1

�2p�3

Z
d4sm�x�Km

1,2eiq1,2?x

3 �jc1,2j
2n1,2 1 js21,22j

2�n21,22 1 1�	 , (22)

Gs�1, 2� �
1

�2p�3

Z
d4sm�x�Km

1,2e2iK1,2?x

3 �s�
21,2c2,21n21,2 1 c1,22s�

22,1�n1,22 1 1�	 .

(23)

Here d4sm�x� � d3Sm�x; tf� F�tf �dtf is the product of
the normal-oriented volume element depending paramet-
rically on tf (the freeze-out hypersurface parameter) and
the invariant distribution of that parameter F�tf�, and
um�x� is the local flow vector at freeze-out. The other
variables are defined as follows:

k̃���m�x� � k���m�x� 2 k���
n um�x�un�x� , (24)

Vk�x� �
q

m2
0 2 k̃mk̃m 2 dM2�x, k̃� , (25)

k̃ �
q

2k̃mk̃m , (26)

k
m
6i�x� � um�x�vki 7 k̃

m
i �x� , (27)

k
�m
6i �x� � um�x�Vki �x� 7 k̃

�m
i �x� , (28)

ni,j�x� � 1��exp��K�m
i,j �x�um�x� 2 m�x�	�T �x�� 2 1	 ,

(29)
4015



VOLUME 83, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 15 NOVEMBER 1999
FIG. 2. Schematic illustration of the new kind of correla-
tions for mass-shifted p0 pairs, assuming T � 140 MeV, Gc �
exp�2q2

12R
2
G�2	, Gs � exp�22K2

12R
2
G	, with RG � 2 fm. The

fall of the BBC for increasing values of jkj is controlled
here by a momentum-dependent effective mass, m�

p � mp �1 1
exp�2k2�L2

s�	, with Ls � 325 MeV in the sudden approxima-
tion. Without the Ls cutoff, the BBC would increase indefi-
nitely as jkj ! `.

r�i, j, x� �
1
2

log��Km
i,jum�x�	��K�n

i,j �x�un�x�	� , (30)

ci,j � cosh�r�i, j, x�	, si,j � sinh�r�i, j, x�	 , (31)

where i, j � 61, 62 and the mean and the relative
momenta for the a�b� quanta are defined as K

���m
i,j �x� �

�k���m
i �x� 1 k

���m
j �x�	�2 and q

���m
i,j � k

���m
i 2 k

���m
j , re-

spectively. We assume, of course, that the mass shift and
hence squeezing is nonvanishing over only a finite domain
of the freeze-out hypersurface. In terms of Eqs. (22) and
(23), the following new expressions describe the particle
spectra and the correlation function in the presence of
local squeezing:

N1�k1� � Gc�1, 1� , (32)

C2�k1, k2� � 1 1
jGc�1, 2�j2

Gc�1, 1�Gc�2, 2�
1

jGs�1, 2�j2

Gc�1, 1�Gc�2, 2�
.

Figure 2 illustrates the novel character of BBC for
two identical bosons caused by in-medium mass-
modifications, along with the familiar Bose-Einstein or
HBT correlations on the diagonal of the �k1, k2� plane.

Particle-antiparticle pairs.—As the Bogoliubov trans-
formation always mixes particles with antiparticles, the
above considerations hold only for particles that are their
own antiparticles, e.g., the f meson and p0. However, the
extension to particle-antiparticle correlations is straightfor-
ward. Let “1” label particles, “2” antiparticles if antipar-
ticle is different from particle, let “0” label both particle
and antiparticle if they are identical particles. The nontriv-
ial correlations from mass-modification for pairs of �11�,
�12�, and �00� type read as follows:
4016
C11
2 �k1, k2� � 1 1

jGc�1, 2�j2

Gc�1, 1�Gc�2, 2�
, (33)

C12
2 �k1, k2� � 1 1

jGs�1, 2�j2

Gc�1, 1�Gc�2, 2�
, (34)

C00
2 �k1, k2� � 1 1

jGc�1, 2�j2

Gc�1, 1�Gc�2, 2�
1

jGs�1, 2�j2

Gc�1, 1�Gc�2, 2�
,

where we have assumed for simplicity that mass-
modifications of particles and antiparticles are the same.

Summary.—We formulated the theory of particle corre-
lations and spectra for bosons with in-medium mass shifts,
which predicts the existence of unlimited back-to-back
correlations of ff, K1K2, p0p0, and p1p2 pairs that
could be searched for at CERN SPS and upcoming RHIC
BNL heavy ion experiments [14]. These correlations not
only survive orders of magnitude finite time suppressions,
but may also be utilized to determine the freeze-out time
distribution and in-medium hadron modifications.
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