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Resonant Two-Body D Decays
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The contribution of a K��1430� 01 resonance to D0 ! K2p1 is calculated by applying the soft
pion theorem to D1 ! K�p1, and is found to be about 30% of the measured amplitude and to be
larger than the DI � 3�2 component of this amplitude. We estimate a 70% contribution to the total
amplitude from a higher K��1950� resonance. This implies large deviations from factorization in D
decay amplitudes, a lifetime difference between D0 and D1, and an enhancement of D0 D̄0 mixing
due to SU(3) breaking.

PACS numbers: 13.25.Ft, 11.40.Ha
Hadronic two-body and quasi-two-body weak decays
of D mesons, which constitute a sizable fraction of all
hadronic D decays [1,2], involve nonperturbative strong
interactions. Long distance QCD effects spoil the sim-
plicity of the short distance behavior of weak interac-
tions [3]. Therefore, a simplified approach in which the
amplitudes of these processes are given by a factoriz-
able short-distance current-current effective Hamiltonian
is not expected to work too well. Various approaches
were employed to include long distance effects. The most
commonly and very frequently used prescription, moti-
vated by 1�Nc arguments [4], is to apply “generalized
factorization” [5–8]: The two relevant Wilson coeffi-
cients (c1, c2), multiplying appropriate four-quark short-
distance operators, are replaced by scale-dependent free
parameters (a1, a2). In this prescription, the magnitudes
of isospin amplitudes are calculated from experimentally
determined decay constants and form factors, while strong
phases (to be determined from experiment) are assigned
to these amplitudes to account for final state interactions.
In spite of its somewhat ad hoc and disputable procedure
(evidently final state phases do not occur only in elas-
tic scattering, but are largely due to inelastic processes),
this phenomenological treatment seems to work reason-
ably well in Cabibbo-favored D decays [6,8]. Its fail-
ure in the Cabibbo-suppressed D ! pp and D ! KK̄
processes [9] is believed to be associated with inelastic
hadronic rescattering.

It was pointed out almost 20 years ago [10] that the
observed resonance states in the Kp , Kr�K�p, pp, pr

channels, with masses close to the D mass, may strongly
affect final state interactions in D decays [11]. The
idea is clear and simple; however, its implementation
involves a multichannel rescattering S matrix which
cannot be quantified in a model-independent manner [12].
In practice, it is impossible to calculate the effect of s-
channel resonance states in two-body D decays without
knowing the weak couplings of the D meson to these
resonances. If some of these couplings are sufficiently
large, the corresponding resonances may have large or
even dominating contributions in certain decays. In this
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case, the apparent success in describing two-body and
quasi-two-body decays in terms of generalized factorized
amplitudes would be an accident which ought to be further
investigated.

Large resonance contributions in D0 decays could ex-
plain the observed D1 2 D0 lifetime difference. Con-
trary to the D0, the final states in Cabibbo-favored D1

decays, made of d̄s d̄u, are pure I � 3�2 and do not re-
ceive such contributions. Also, resonant amplitudes in-
volve large SU(3) breaking in the resonance masses and
widths. Consequently, intermediate resonance states are
expected to lead to large D0 D̄0 mixing. We return to
these questions in our conclusion.

The purpose of this Letter is to present the first
model-independent quantitative study of direct channel
resonance contributions to two-body D decays. We
will calculate the contribution of K̄�0�1430�, a particular
excited K meson 01 state (sd̄ in a P wave), to the
Cabibbo-favored D0 ! K2p1 decay process. In spite
of the fact that this resonance peaks at 436 MeV below
the D mass, we find its contribution to amount to a
sizable fraction, approximately 30%, of the measured
D ! K2p1 amplitude. Another 01 Kp resonance,
observed around 1900 MeV, is likely to have a larger
contribution due its close proximity to the D meson mass.
Assuming that its weak coupling to D is approximately
equal to that of the resonance at 1430 MeV, we estimate
its contribution to be about 70%.

An important step in our analysis is the evaluation of
the weak interaction matrix element between a D meson
and the 1430 MeV resonance state. For this purpose, we
apply the soft pion theorem which relates this amplitude
to the measured I � 3�2 D1 ! K̄�0p1 amplitude [13].
It is crucial in our argument that the final state K̄�0p1 is
“exotic,” in which case the amplitude does not involve a
pole term (“surface term”) and varies smoothly and only
slightly in the soft pion limit.

The 1430 01 K� resonance contribution to D0 !
K2p1 is given by a Breit-Wigner form

A�1430, K2p1� �
h1g

m2�D0� 2 m2 1 imG
, (1)
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where h1 � �K̄�0jHW jD0�, m�D0� � 1864.6 6 0.5 MeV,
m � m�K�0� � 1429 6 6 MeV, G � G�K�0� � 287 6

23 MeV [14]. The strong K�0Kp coupling g is obtained
from the K�0 width [14]:

g2 �
8pm2Gf

pp

, f � B�K̄�0 ! K2p1� � 0.62 6 0.07,

pp � 621 MeV. (2)

The hadronic weak matrix element h1 is related to the
measured I � 3�2 amplitude h2 � �K̄�0p1�qp �jHW jD1�
through the soft pion theorem [15],

lim
qp!0

�K̄�0p1�qp �jHW jD1� �
2i
fp

�K̄�0j �Q2
5 , HW � jD1� ,

(3)

where fp � 130 MeV and Q2
5 is the axial charge. Note

that the amplitude on the left-hand side involves no pole
4006
term since K̄�0p1 is an I � 3�2 state. [On the other
hand, the I � 1�2 D ! K�p amplitude contains such a
pole term from an intermediate 02�1460� Kp resonance
[14], and, consequently, does not vary smoothly in the
soft pion limit.] The �V 2 A� �V 2 A� structure of the
DI � 1 weak Hamiltonian implies

�Q2
5 , HW � � 2�Q2, HW � , (4)

and the isospin-lowering operator Q2 obeys Q2jD1� �
jD0�, �K̄�0jQ2 � 0. Neglecting the small variation in
the D1 ! K̄�0p1 amplitude as one moves the pion four
momentum from its physical value to zero, one finds

jh1j 	 fp jh2j . (5)

The amplitude h2 is obtained from the measured width
G�D1 ! K�0p1� [14,16]:
h2
2 �

8pm2�D1�G�D1 ! K�0p1�
qp

, m�D1� � 1869 6 0.5 MeV, qp � 368 MeV,

G�D1 ! K�0p1� �
0.023 6 0.003

t�D1�f
, t�D1� � 1.051 6 0.013 ps . (6)
Combining (1), (2), (5), and (6), one finds

jA�1430, K2p1�j � �7.85 6 0.65� 3 1027 GeV. (7)
The error contains only experimental errors. The uncer-
tainty due to taking the soft pion limit qp ! 0 in the
smoothly varying amplitude is assumed to be smaller
and is neglected. It would be interesting to study this
correction, which could slightly increase or decrease the
amplitude.

In order to compare the calculated K��1430� resonance
contribution to the measured I � 1�2 term in D0 !
K2p1, one expresses all three D ! Kp amplitudes in
terms of isospin amplitudes. Using a somewhat different
normalization than elsewhere [2,17], we write

A�D0 ! K2p1� � A1�2 1 A3�2 ,
p

2 A�D0 ! K̄0p0� � 2A1�2 1 2A3�2 ,

A�D1 ! K̄0p1� � 3A3�2 . (8)

Consequently,
jA1�2j
2 �

2
3

�jA�D0 ! K2p1�j2 1 jA�D0 ! K̄0p0�j2 2
1
3
jA�D1 ! K̄0p1�j2� ,

jA3�2j
2 �

1
9
jA�D1 ! K̄0p1�j2,

cosdI �
jA�D0 ! K2p1�j2 2 2jA�D0 ! K̄0p0�j2 1

1
3 jA�D1 ! K̄0p1�j2

6jA1�2A3�2j
, (9)
where dI is the relative phase between isospin amplitudes.
One then finds from the experimental rates [14,16] the
values [17]

jA1�2j � �24.5 6 1.2� 3 1027 GeV,

jA3�2j � �4.51 6 0.22� 3 1027 GeV,

dI � �90 6 7�±. (10)
This and (7) imply

jA�1430, K2p1�j
jA1�2j

� 0.32 6 0.03 . (11)

That is, the 1430 MeV Kp resonance contribution is
about 30% of the dominant I � 1�2 amplitude in D !
Kp . Its contribution to D0 ! K2p1 is larger than the
I � 3�2 component of this amplitude. Note that A�D0 !
K2p1� 	 A1�2, since jA3�2j

2 ø jA1�2j
2 and dI 	 90±.

In view of this sizable result, which is rather striking
for a resonance peaking 436 MeV below the D mass,
one raises the question of possibly larger contributions
to D ! Kp from resonances lying closer to the D.
One such resonance state, around 1900 MeV [denoted
K��1950� in [14] ], was observed in Kp scattering
[18], with a mass m0 � 1945 6 22 MeV and a width
G0 � 201 6 86 MeV. Somewhat different values,
m0 � 1820 6 40 MeV, G0 � 250 6 100 MeV, were ob-
tained in a K-matrix analysis [19]. Since this resonance
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lies right at the D mass, its contribution to D0 ! K2p1

is likely to be larger than that of K��1430�. In order
to calculate this contribution, one must know the matrix
element �K��1950�jHW jD�, for instance by relating it to
�K��1430�jHW jD�. The higher resonance is most likely a
radial n � 2 excitation of the state at 1430 MeV which
is an n � 1 P-wave sd̄ state. In both amplitudes the
local HW connects a cū S-wave state to an sd̄ P-wave
state which is more spread out. The radially excited
n � 2 state is slightly less localized than the n � 1
state. Consequently, one expects �K��1950�jHW jD� to be
slightly smaller than �K��1430�jHW jD�.

Assuming about equal weak amplitudes for the two
resonance states, one estimates from (1), (2) [18,19]
jA�1950, K2p1�j
jA�1430, K2p1�j

	

s

�m2�D0� 2 m2�2 1 m2G2�m02G0f 0pp


�m2�D0� 2 m02�2 1 m02G02�m2Gfp0
p

� 2.1 2.4 ,

f 0 � B�K��1950� ! K2p1� � 0.35, p0
p � 904 MeV, (12)
depending somewhat on m0 and G0. Namely, in the
absence of a radial suppression of its weak coupling to
D, the resonance around 1900 MeV contributes about
70% of the I � 1�2 D ! Kp amplitude. In reality,
the contribution may be somewhat (but not very much)
smaller.

The combined contribution of the two resonances, at
1430 MeV and in the range 1820–1945 MeV, is consid-
erably larger than the I � 3�2 amplitude in D ! Kp .
These contributions dominate the I � 1�2 amplitude if
the two resonances interfere constructively. This is the
case if the mass of the second resonance is lower than
mD , as claimed in [19]. This explains the I � 1�2 domi-
nance observed in these decays. In view of its important
role in D decays, it would be helpful to determine the
mass of the higher resonance more precisely.

The above calculations show that direct channel reso-
nances have very large contributions in certain two-body
D decays. In a four-quark operator language (or in a dia-
gram language) these contributions are manifestations of
annihilation (or W-exchange) amplitudes. A possible phe-
nomenological way of incorporating them in D decays is
by employing a diagrammatic language [20], decomposing
the D ! Kp amplitudes, for instance, into a color-favored
“tree” amplitude T , a “color-suppressed” amplitude C, and
an “exchange” amplitude E. In a more general context this
description is based on flavor SU(3) [21]. Here we assume
only isospin symmetry. The three amplitudes T , C, and E
are an overcomplete set. Only two combinations are re-
quired to describe the two isospin amplitudes:

3A1�2 � 2T 2 C 1 3E,

3A3�2 � T 1 C.
(13)

The amplitude T may be chosen to be real, C obtains
a complex phase from rescattering, while E is given by
the sum of two Breit-Wigner forms, representing the two
resonances in D ! Kp.

Clearly this scheme, which is more appropriate for the
case of large resonance contributions, deviates substan-
tially from the generalized factorization framework [6–8].
In the latter prescription one combines the real amplitudes
T �
GFp

2
jVudVcsja1 fp �m2

D 2 m2
K �FDK �m2

p � ,

C �
GFp

2
jVudVcsja2 fK �m2

D 2 m2
p �FDp �m2

K � ,

E � 0 , (14)
into isospin amplitudes (13) which are assigned arbitrary
phases. A large nonzero E term, which is required
in order to describe resonating amplitudes, modifies the
values obtained from the experimental data for a1 and
a2 relative to their values in the generalized factorization
prescription. Although the numerical changes may not
be very large, which is the reason for the apparent
success of the generalized factorization approach, the
difference between the physical interpretations of the two
descriptions, with and without the E term, is evident.

A fit of D decays to K̄p , K̄h, K̄h0 in terms of
diagrammatic amplitudes, assuming flavor SU(3) by
which T , C, E can be separated, was carried out re-
cently by Rosner [22]. He finds (in units of 1026 GeV)
jT j � 2.7, jCj � 2.0, jEj � 1.6. A large phase (2114±)
is found in E�T . The large magnitude of E, comparable
to the other two amplitudes, and its sizable phase relative
to T , are evidence for the important role of resonances in
these decays.

To demonstrate the insensitivity of the naive factoriza-
tion prescription to large nonfactorizable resonant con-
tributions, we note the following: Extracting a1 and a2
from the above values of jT j and jCj, using in (14) the
values FDK �m2

p � � 0.77 [23], FDp �m2
p � � 0.70, fK �

160 MeV, gives ja1j � 1.06, ja2j � 0.64. These val-
ues do not differ by too much from a1 � c1�mc� �
1.26, a2 � c2�mc� � 20.51, obtained in the traditional
way which disregards resonance contributions [6–8].

While intermediate resonances were shown here to
be important in D0 decays, they do not contribute
to Cabibbo-favored D1 decays, where the final states
consisting of d̄s d̄u are pure I � 3�2. This can be
a qualitative explanation for the measured longer D1

lifetime. A calculation of the D1�D0 lifetime ratio,
including resonance contributions in D0 decay, is a
challenging task.
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To conclude, we comment on the possible effect of di-
rect channel resonances on D0 D̄0 mixing. Reasonably
small SU(3) breaking in D decays to two pseudoscalar
mesons was shown to enhance the mixing by several orders
of magnitudes relative to the short distance box diagram
contribution [24]. The actual enhancement was argued to
be much smaller when summing over all decay modes, if a
large energy gap existed between the charmed quark mass
and LQCD [25]. Resonance states close to the D mass vio-
late this assumption. Moreover, resonant contributions
lead to particularly large SU(3) breaking between SU(3)-
related D decay rates. For instance, mass and width differ-
ences between Kp and pp resonances show up as large
rate differences (when Cabibbo-Kobayashi-Maskawa fac-
tors are included), since direct channel resonance ampli-
tudes peak strongly when the resonance mass approaches
the D mass. This raises the possibility that SU(3) breaking
in resonance amplitudes enhances D0 D̄0 mixing beyond
predictions based on the contributions of a few two-body
decays [24]. Such effects were discussed recently in [26],
where it was noted that, in the lack of information about
weak Hamiltonian matrix elements between a D meson
and the resonances, some crude assumptions must be made.
The authors assume vacuum saturation for these matrix ele-
ments, implying that P-wave 01 resonances (for which the
wave functions vanish at the origin) do not contribute to
D0 D̄0 mixing. Our model-independent calculation finds
a large matrix element for the 01 Kp resonance at 1430,
which indicates that the mixing can indeed be larger than
estimated in [24]. This interesting possibility deserves fur-
ther study.
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