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Short-Distance Mass of a Heavy Quark at Order a3
s
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The relation between the on-shell quark mass and the mass defined in the modified minimal
subtraction scheme is computed up to order a3

s using conformal mapping and Padé approximation.
Implications for the numerical values of the top and bottom quark masses are discussed. We show that
the new three-loop correction significantly reduces the theoretical uncertainty in the determination of
the quark masses.

PACS numbers: 12.38.Bx, 14.65.Fy, 14.65.Ha
In quantum chromodynamics (QCD) practical calcula-
tions are very often performed in the modified minimal
subtraction (MS) scheme [1,2] leading to the definition of
the so-called short-distance MS mass. The MS mass occu-
pies a distinguished place among various mass definitions.
First, it is a truly short distance mass not suffering from
nonperturbative ambiguities. Second, the MS mass proves
to be extremely convenient in multiloop calculations of
mass-dependent inclusive physical observables dominated
by short distances (for a review, see [3]). On the other
hand, the experiments often provide masses which are
tightly connected to the on-shell definition. Thus, con-
version formulas are needed in order to make contact
between theory and experiment. The two-loop relation
between MS and the on-shell definition of the quark mass
has been obtained in [4]. Until recently, the accuracy
of this equation was enough for the practical applica-
tions. Meanwhile, however, new computations have be-
come available which require the relation between the MS
and on-shell mass at O �a3

s � in order to perform a consis-
tent analysis. The necessity of an accurate determination
of the quark masses, especially those of the top and bottom
ones, is demonstrated by the following two examples:

(i) The main goal of the future B physics experiments
is the determination of the Cabibbo-Kobayashi-Maskawa
matrix elements which will give deeper insight into the
origin of CP violation and possibly also provides hints
to new physics. In particular, the precise measurement of
Vcb is very promising. It is determined from semileptonic
B meson decay rates. Thus it is desirable to know the
bottom quark mass as accurately as possible as it enters
already the Born result to the fifth power.
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(ii) One of the primary goals of a future electron-
positron linear collider (NLC) or muon collider (FMC)
will be the precise determination of the top quark prop-
erties, especially its mass, Mt . In hadron colliders like
the Fermilab TEVATRON or the Large Hadron Collider
(LHC) the top quarks are reconstructed from the invari-
ant mass of the W bosons and the bottom quarks. On
the contrary, in lepton colliders it is possible to determine
the top quark mass from the line shape of the produc-
tion cross section s�e1e2 ! tt̄� close to the threshold.
Simulation studies have shown that an experimental un-
certainty of 100–200 MeV in the top mass determination
can be achieved [5]. Thus also from the theoretical side
the ambiguities have to be controlled with the same pre-
cision. In particular, in this context much attention has
been devoted to the relation of the pole mass, M, to the
MS mass, m. Although the pole mass demonstrates a bad
infrared behavior, it is often convenient to use it in inter-
mediate steps.

The connection between the MS and on-shell mass is
given by

m�m� � zm�m�M , (1)

where zm is finite and has an explicit dependence on the
renormalization scale m. In [6] the infrared finiteness
and the gauge invariance of M was proven. In [4],
the perturbative expansion of zm has been computed up
to order a2

s . The main purpose of this Letter is the
computation of zm up to order a3

s . Therefore three-
loop corrections to the fermion propagator have to be
considered. It is convenient to parametrize them in the
following form:
zm�M� � 1 1 aMCFzF
m 1 a2

M�C2
FzFF

m 1 CFCAzFA
m 1 CFTnlz

FL
m 1 CFTzFH

m � 1 a3
M z�3�

m 1 O �a4
M � , (2)
with aM � a�nf �
s �M��p . nl � nf 2 1 is the number of

light (massless) quarks. In the following, we will use
zm � zm�M�.
The relation between the MS and on-shell mass is
obtained from the requirement that the inverse fermion
propagator has a zero at the position of the on-shell
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mass. Thus in principle it is necessary to evaluate three-
loop on-shell integrals in order to obtain the O �a3

s � term
in the MS–on-shell mass relation. This is avoided by
computing expansions of the quark self-energy for small
and large external momentum. After building the proper
combinations needed for the relation between the MS and
on-shell mass, a conformal mapping q2�M2 � 4v��1 1

v�2 is performed which maps the complex q2 plane into
4002
the interior of the unit circle in the v plane. The relevant
point v � 1 (corresponding to q2 � M2) is reached with
the help of Padé approximation [7]. For further details we
refer the reader to [8,9]. Note that this method has already
been extremely successful in other applications [8].

Let us at this point discuss the one- and two-loop results
in order to get some feeling about the quality of our
procedure. Using our method, the following numbers can
be extracted
zF
m � 21.0005�6�, zFF

m � 20.49�2�, zFA
m � 23.4�1�, zFL

m � 1.566�4�, zFH
m � 20.1553�2� , (3)
where the error is obtained by doubling the spread of
the different Padé approximants. The comparison with
the exact result results [4] �21, 20.510 56, 23.330 26,
1.562 05, 20.155 35� shows very good agreement.

The results obtained at one- and two-loop order encour-
age us to apply the same procedure also at order a3

s . For
the technical details we also refer to [9]. We just want
to mention that in total we were able to evaluate 14 input
terms for the Padé procedure.

We could apply the described procedure to each color
factor separately [9]. For most practical applications in
QCD the number of flavors may be set to 3, i.e., CF �
4�3 and CA � 3, and T � 1�2 can be adopted. Adding
in a first step, the results for the moments and performing
the Padé approximations afterwards lead us to
m�M�
M

� 1 2 1.333aM 1 a2
M�214.33 1 1.041nl� 1 a3

M�2202�5� 1 27.3�7�nl 2 0.653n2
l � , (4)

mm

M
� 1 2 1.333aM 1 a2

M�211.67 1 1.041nl� 1 a3
M�2170�5� 1 24.8�7�nl 2 0.653n2

l � , (5)

M
m�m�

� 1 1 1.333am 1 a2
m�13.44 2 1.041nl� 1 a3

m�194�5� 2 27.0�7�nl 1 0.653n2
l � , (6)
with am � a�nf �
s �m��p and mm defined through mm �

m�mm�. For simplicity, m � M and m � m has been
chosen in (4) and (6), respectively. In the above equations
the exact values of the n2

l term [10] is displayed.
Our method leads to 0.656(8) which is in very good
agreement. This is a further justification for our approach.

The results for the values of nl � 0, . . . , 5 are summa-
rized in Table I where also the two-loop coefficients are
displayed. Actually, the coefficients of the terms linear
in nl have been obtained by performing a fit to the three-
loop results of Table I. The errors of about 2–3% for
the three-loop results of (4)–(6) and Table I have again
been obtained by doubling the spread of Padé approxi-
mants. On one side this is justified with the behavior at
O �a2

s � where the results of the first column in Table I
are reproduced with an accuracy below 2%. On the other
side, the Padé approximants demonstrate more stability in
the case where the moments are added and nl is fixed
afterwards than in the case where the Padé procedure is
applied to the individual color structures separately. We
want to stress that the errors in Eqs. (4)–(6) are some-
what overestimated once a value for nl is chosen. Thus
for practical applications Table I should be used.

Let us next compare our results with various predictions
which already exist in the literature obtained with the
help of different optimization procedures. In Table II the
results obtained for M�m�m� using the fastest apparent
convergence (FAC) [11] and the principle of minimal
sensitivity (PMS) [12] are compared with ours. For nl �
2 the discrepancy with our central value amounts to only
7%. It even reduces to 2% for nl � 5, i.e., in the case
of the top quark. The predictions obtained in the large-
b0 limit, where b0 is the first coefficient of the QCD b

function, are also shown in Table II. Excellent agreement
below 1% is found for nl � 3. It amounts to roughly 5%
for nl � 4 and 14% for nl � 5.

In the remaining part of this Letter we will discuss
some important applications of the new term of O �a3

s �
in the MS on-shell relation.

Threshold phenomena are conveniently expressed in
terms of the pole mass. To be specific let us consider
the production of top quarks in e1e2 collisions. The

TABLE I. Dependence of z�2�
m and z�3�

m on nl . The choice
m2 � M2, respectively, m2 � m2 has been adopted. z�2�

m is
defined as the sum of the terms inside the square brackets in
Eq. (2).

m�M���M� mm�M M�m�m�
nl O �a2

s � O �a3
s � O �a2

s � O �a3
s � O �a2

s � O �a3
s �

0 214.33 2202�5� 211.67 2170�5� 13.44 194(5)
1 213.29 2176�4� 210.62 2146�4� 12.40 168(4)
2 212.25 2150�3� 29.58 2123�3� 11.36 143(3)
3 211.21 2126�3� 28.54 2101�3� 10.32 119(3)
4 210.17 2103�2� 27.50 281�2� 9.28 96(2)
5 29.13 282�2� 26.46 262�2� 8.24 75(2)
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TABLE II. Comparison of the results obtained in this paper
with estimates based of FAC, PMS, and the large-b0 approxi-
mation for the O �a3

s � term of M�m�m�.

nl This work FAC [23] PMS [23] Large-b0 [10]

2 143(3) 152.71 153.76 137.23
3 119(3) 124.10 124.89 118.95
4 96(2) 97.729 98.259 101.98
5 75(2) 73.616 73.903 86.318

corresponding physical observables expressed in terms
of Mt show in general a bad convergence behavior. In
the case of the total cross section the next-to-next-to-
leading order corrections [13–15] partly exceed the next-
to-leading ones. Furthermore, the peak position which is
the most striking feature of the total cross section and from
which finally the mass value can be extracted depends
strongly on the number of terms one includes into the
analysis. The reason for this is that the pole mass is
sensitive to long-distance effects which results in intrinsic
uncertainties of order LQCD [16].

Several strategies have been proposed to circumvent this
problem [15,17,18]. They are based on the observation
that the same kind of ambiguities also appear in the
static quark potential, V �r�. In the combination 2Mt 1

V �r�, however, the infrared sensitivity drops out. Thus a
definition of a short-distance mass extracted from threshold
quantities should be possible. The relation of the new mass
parameter to the pole mass is used in order to reparametrize
the threshold phenomena. On the other hand, a relation of
the new quark mass to the MS mass must be established
as it is commonly used for the parametrization of those
quantities which are not related to the threshold. In order
to do this consistently the three-loop relation between the
MS and the on-shell mass is needed.

In [17] the concept of the so-called potential mass,
mt,PS , has been introduced. Its connection to the pole
mass is given by mt,PS�mf� � Mt 2 dmt�mf� where
dmt�mf� is obtained from the static quark potential. In
this way a subtracted potential, V �r , mf�, is defined. The
factorization scale mf has been introduced in order to
extract the infrared behavior arising from the potential.
In the combination Mt 2 dmt�mf� it cancels against the
one of Mt leading to a significant reduction of the long-
distance uncertainties in mt,PS [17]. Thus it is promising
to formulate the threshold problems in terms of mt,PS�mf�
and V �r , mf� instead of Mt and V �r�. In the final
result the dependence on mf cancels. For the numerical
analyses the value mf � 20 GeV has been adopted in
[14] as its upper bound is roughly given by MtCFas�m�.
dmt�mf� is known up to order a3

s [17]. Thus we are
now in the position to establish a relation between the two
short-distance masses mt,PS�mf� and mt�m� with the result

mt,PS�20 GeV� � �165.0 1 6.7 1 1.2 1 0.28� GeV ,

(7)
where the different terms represent the contributions of
order a0

s to a3
s . For the numerical values mt�mt� �

165.0 GeV and a�6�
s �mt�mt�� � 0.1085 have been used.

Note that the error of the O �a3
s � coefficient in the MS-

on-shell mass relation is negligible. The comparison of
Eq. (7) with the analogous expansion for Mt ,

Mt � �165.0 1 7.6 1 1.6 1 0.51� GeV , (8)

shows that the potential mass can be more accurately
related to the MS mass than Mt . The last term of the
expansion in (7) is of the same order of magnitude as
the error in the top quark mass determination at a NLC.
Whereas in [14] this term has been taken as uncertainty in
the mass relation the error reduces significantly after the
knowledge of the O �a3

s � term of the MS on-shell relation.
This can be deduced from the well-behaved expansion
in Eq. (7). The dominant error is now provided by the
uncertainty in as.

A similar strategy has been proposed in [15]. There
the so-called 1S mass, M1S

t , has been defined as half the
perturbative mass of a fictious toponium 13S1 ground state
which would exist if the top quark were stable. The
philosophy is very similar as in the case of the potential
mass. From the experiment the quantity M1S

t is extracted.
In [15] it has been shown that this is possible with an
uncertainty of approximately 200 MeV. In a next step
M1S

t has to be related to the MS mass mt�mt�. As the
extraction of M1S

t is based on a next-to-next-to-leading
order formalism the O �a3

s � relation computed in this work
is necessary.

In the practical calculation care has to be taken in con-
nection to the expansion parameter which has to be used.
Actually the so-called Y expansion has to be adopted.
Details can be found in [19,20]. One finally arrives
at the following relation between the MS and 1S mass

mt�mt� � �175.00 2 7.60 2 0.97 2 0.14� GeV , (9)

where M1S
t � 175 GeV and a

�5�
s �MZ� � 0.118 has been

adopted. Using the large-b0 results for the order a3
s term

the last term reads 20.23 [15], which is off by more than
50% from the exact result. The conclusions which can
be drawn from Eq. (9) are very similar to the ones stated
above: the uncertainties due to unknown terms in the mass
relations are negligible as compared to the error with which
M1S

t can be extracted from the experiment. The dominant
uncertainty comes from the error in as which amounts for
60.003 to roughly 200 MeV [15] in Eq. (9).

Also the bottom quark mass can be extracted from
quantities related to the quark threshold. Recently [20,21]
a precise value for the bottom quark mass has been
determined in the context of QCD sum rules. For example,
in [20] the on-shell mass was eliminated in favor of the 1S
mass in order to reduce the error. Once M1S

b is determined,
mb�mb� can be found in analogy with the top quark
case. As a result, the values M1S

b � 4.71 6 0.03 GeV and
mb�mb� � 4.2 6 0.06 have been obtained. Following the
4003



VOLUME 83, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 15 NOVEMBER 1999
procedure described in [20], one arrives at

mb�mb� � �4.71 2 0.40 2 0.11 2 0.03

6 0.03 6 0.04� GeV , (10)

where the different terms correspond to different orders
in the Y expansion. The first error is due to M1S

b and
the second one reflects the error in a�5�

s �MZ� � 0.118 6

0.004 which is adopted from [20]. Because of the nice
convergent behavior in (10) the total error on mb�mb�
contains only these two sources which finally leads to

mb�mb� � 4.17 6 0.05 GeV . (11)

It is important to stress that taking into account of the
newly computed O �a3

s � term in the MS-on-shell relation
is crucial for the reliable estimation of the errors in (11).
Indeed, a deviation of the real value for z�3�

m from the large-
b0 estimation by, say, a factor of 2, which one could
not exclude a priori, would result to a systematic shift in
mb�mb� of around 100 MeV.

A somewhat different approach for the determination of
both the charm and bottom mass has been followed in [22].
There the lower states in the heavy quarkonium spectrum
were computed up to order a4

s and then used to extract
the pole masses of b and c quarks. The transformation
to the MS mass has been performed with the help of
the two-loop relation [4]. However, to the order the
quarkonium spectrum was computed it is more consistent
to use the O �a3

s � relation provided in this paper. Thus
taking over the error estimates from [22], the on-shell value
for the bottom quark mass reads Mb � 5.00110.104

20.066 GeV.
It transforms to the following MS value

mb�mb� � 4.32210.043
20.028 GeV , (12)

where the value a
�5�
s �MZ� � 0.114 has been used as in

[22]. Compared to [22], the inclusion of the O �a3
s � terms

leads to a shift in the central values of more than 100 MeV.
In the case of the bottom quark this change is even larger
than the errors presented in [22]. This demonstrates that
a consistent treatment of the different orders in as is
absolutely crucial. For a comprehensive discussion of
recent determinations of mb�mb� we refer to the third
reference in [21].

To summarize: the computed value of the next-to-next-
to-leading correction to the MS on-shell mass relation
proves to be in a good agreement with an estimation based
on the large-b0 limit and has led to a significant reduction
of the theoretical uncertainty in the determination of the
quark masses.
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