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Electric Dipole Moments and the Mass Scale of New T-Violating, P-Conserving Interactions
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(Received 20 May 1999)

We consider the implications of experimental limits on the permanent electric dipole moment (EDM)
of the electron and neutron for possible new time-reversal violating (TV) parity-conserving (PC) interac-
tions. We show that the constraints derived from one-loop contributions to the EDM exceed previously
reported two-loop limits by more than an order of magnitude and imply a lower bound on the new
TVPC mass scaleLTVPC of 150 TeV for new TVPC strong interactions. These results imply a value
of 10215 or smaller for the ratio of low-energy TVPC matrix elements to those of the residual strong
interaction.

PACS numbers: 11.30.Er, 14.20.Dh, 14.60.Cd
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The search for physics beyond the standard model is
topic of ongoing interest for both high-energy colliders a
well as low-energy experiments involving atoms and nu
clei. Although the standard model (SM) is enormous
successful in accounting for a plethora of electroweak da
of a broad range in energies, there exist strong theore
cal reasons for considering the standard model as an
fective theory—derived from some broader framework—
applicable to physics below the weak scale. Among th
questions to be addressed in considering possible fram
works is the mass scaleL associated with “new physics.”
In this respect, experiments in atomic parity violatio
(APV) provide a powerful probe of new physics scena
ios which violate parity. Recently, the Boulder Group ha
used APV to determine the weak chargeQW of the cesium
atom [1]. The reported value forQW , which differs from
the standard model prediction by 1.5% (2.5s), implies the
existence of new parity-violating (PV) interactions with
mass scalesLPV on the order of 1 TeV or greater [2].

In this Letter, we considerLTVPC, the mass scale
associated with possible new time-reversal violating (TV
parity-conserving (PC) interactions. Explicit searches f
new TVPC effects at low energies have been carried o
using studies of detailed balance in nuclear reactions
and neutron transmission experiments [4]. These stud
imply that aT & few 3 1023, whereaT gives the ratio
of typical TVPC nuclear matrix elements to those of th
residual strong interaction. The corresponding limits o
the TVPC mass scale are weak:LTVPC * 10 GeV. As
we argue below, significantly more stringent limits can b
inferred indirectly from searches for a permanent electr
dipole moment of the electron and neutron.

It has been pointed out in a series of recent pape
that the lowest-dimension flavor conserving TVPC inte
actions have dimension seven [5,6]. Such interactions c
generate a permanent electric dipole moment (EDM) of
elementary fermion or its many-body bound states in th
presence of a PV standard model radiative correction.
was argued in these studies that the most restrictive lim
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on new dimension seven TVPC interactions is obtain
from a two-loop contribution to the EDM, and the ex
pected magnitude of low-energy TVPC observables w
inferred. No attempt was made to derive a lower bou
on LTVPC. In what follows, we show that there exist ad
ditional d � 7 operators not considered previously whic
contribute to the EDM at one-loop order and which ge
erate more stringent lower bounds onLTVPC than those
derived at two-loop order. We also revisit the analysis
Ref. [5] and argue that it is inconsistent with the separ
tion of scales and systematic power counting which und
lies low-energy effective field theory (LEEFT). LEEFT
is the appropriate framework for analyzing the nonreno
malizable interactions of interest here. The correspond
scale separation, which is preserved when loop integr
are regulated using dimensional regularization (DR), im
plies a differentLTVPC dependence for the EDM than
obtained in Ref. [5]. Using an explicit calculation, we
obtain the correct scaling of the EDM withLTVPC and
derive lower bounds onLTVPC under naturalness assump
tions for the coefficients of thed � 7 TVPC operators.
We find these bounds are significantly stronger than t
scaleLPV obtained from APV. Our results also imply
aT � 10215 or smaller, independent of any naturalnes
assumptions.

Although the origins of possible new TVPC interaction
are not known, it has been shown that they cannot ar
via tree-level boson exchange in a renormalizable gau
theory [7]. Hence, one expects them to be genera
either by loop effects or nonperturbative short-distan
dynamics. Consequently, it is convenient to descri
its low-energy consequences using effective Lagrangia
Following Ref. [6], we write

Lnew � L4 1
1

LTVPC
L5 1

1

L
2
TVPC

L6

1
1

L
3
TVPC

L7 1 . . . , (1)
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where the subscripts denote operator dimension. The
TVPV EDM operator appears in L5:

O5 � 2
i
2

C
f
5 c̄smng5cFmn . (2)

The TVPC operators considered in Refs. [5,6] appear
in L7:

O
ff 0

7 � C
ff 0

7 c̄f
$
Dmg5cf c̄f 0gmg5cf 0 , (3)

O
gg
7 � C

gg
7 c̄smnlacFmlGan

l , (4)

where f and f 0 are distinct fermions and Fmn and Ga
mn are

the photon and gluon field strength tensors, respectively.
Both O

ff 0

7 and O
gg
7 contribute to C

f
5 at two-loop order,

although only the contribution of the four-fermion interac-
tion has been computed explicitly previously. In addition,
we consider the following TVPC operator appearing in L7:

O
gZ
7 � C

gZ
7 c̄smncFmlZn

l , (5)

where Zmn is the Z-boson field strength tensor. As we

show below, O
gZ
7 contributes to C

f
5 at one-loop order and

yields the strongest bound on LTVPC.
Implicit in the LEEFT expansion of Lnew in Eq. (1) is a

separation of scales. Short-distance effects (m * LTVPC)
are subsumed into the renormalized operator coefficients
Cn. In the present case, these short-distance effects are
not calculable, since the full theory for m * LTVPC is un-
known. Long distance contributions (m & LTVPC) arise
from matrix elements of the effective operators On taken
between states containing only particles having masses
and momenta below LTVPC. When these matrix elements
involve divergent loops containing the On, the use of DR
and modified minimal subtraction (MS) renormalization
preserves the LEEFT separation of scales by protecting
loop integrals from high-momentum (p * LTVPC) con-
tributions. Preservation of the scale separation is critical
to maintaining the power counting (in 1�LTVPC) associ-
ated with Eq. (1). Moreover, it implies that renormaliza-
tion of O5 from loops containing the O7 must scale as
�M�LTVPC�2, where M is the mass of one of the particles
dynamically relevant for m & LTVPC.

We observe that if the parity symmetry broken by the
SM is not restored for scales m * LTVPC, then the coef-
ficient C5 must exist at tree level in the LEEFT. Since
both the SM PV interaction and the fundamental, but not
calculable, interactions which generate the d � 7 TVPC
interactions exist at such scales, there exists no reason
for them not to conspire in generating a nonvanishing C5.
In this case, power counting implies that loops contain-
ing the O7 will generate subdominant contributions to C5
(see below), so that the EDM limits cannot be used to
constrain d � 7 TVPC operators. At best, one may em-
ploy dimensional arguments involving C5 to derived lower
bounds on LTVPC. For example, taking C5 � 4pk2e
and using the present limits on the electron EDM, one
3998
obtains LTVPC * 1014k2 GeV. This bound is consider-
ably stronger than that obtained by the authors of Ref. [5],
who presume, incorrectly, to be able to calculate short-
distance effects via loops.

A more interesting scenario occurs when parity sym-
metry is restored above the weak scale but below LTVPC
(e.g., in a left-right symmetric scenario). In this case,
C5 � 0 at tree level in the LEEFT and becomes non-
vanishing only through PV radiative corrections to the
d � 7 (and higher) TVPC interactions. A conservative
lower bound on LTVPC can be obtained by considering
the SM PV radiative corrections. The leading order con-
tributions to the fermion EDM arising from the TVPC
operators in L7 arise from the diagrams of Figs. 1 and
2. For simplicity, we consider only the effects of O

gZ
7

(Fig. 1) and O
ff 0

7 (Fig. 2). The conclusions obtained from
the two-loop gluon-Z graphs will be similar. Following
Refs. [5,6], we also restrict our attention to neutral cur-
rent PV corrections. The diagrams diverge quadratically.
Following the standard practice of LEEFT, we regulate
the integrals using DR and subtract the pole terms in the
MS scheme with the appropriate counterterm in C

f
5 . In

the case of Fig. 1, the PV effect arises from the axial vec-
tor Z-fermion coupling. In the leading-log approximation,
the resulting finite contribution to the EDM from O

gZ
7 is

C
f
5 � eC

gZ
7

µ
MZ

LTVPC

∂2µ
1

sWcW

∂
g

f
A

µ
1

96p2

∂
ln

M2
Z

m2 ,

(6)

where we have dropped terms quadratic in the fermion
mass, where g

f
A is the axial vector Zff coupling, and

where sW � sinuW is the sine of the Weinberg angle.
In the case of the two-loop contribution generated by

O
ff 0

7 , the dominant terms arise from the graphs appear-
ing in Fig. 2. All other two-loop contributions contain-
ing this operator are suppressed by powers of mf�MZ

where mf is a (light) fermion mass. Turning first to the
graphs of Fig. 2a, we note that the closed fermion loop
containing three insertions is identical to the triangle graph
appearing in the Adler-Bell-Jackiw anomaly. Here, the
vector current insertions are associated with the neutral
gauge bosons and the axial vector insertion arises from
O

ff 0

7 . Denoting its nominally linearly divergent amplitude

+ . . .

γ

Z0

f

FIG. 1. One-loop contributions to EDM of elementary
fermion f. The ≠ denotes the operator O

gZ
7 .
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FIG. 2. Two-loop contributions containing O
ff 0

7 (denoted by
≠) to the EDM of elementary fermion f. (See text.)

Tmla , we choose the loop momentum routing to satisfy
qmTmla � 0 � klTmla , where qm and kl are the photon
and Z-boson momenta, respectively. The result is finite.
We have verified that our result produces the textbook re-
sult for �q 1 k�aTmla for k2 � q2 � 0 [8].

The remaining integration for the two-loop amplitude
of Fig. 2a is straightforward. Since the amplitude contains
no infrared singularities, we follow Ref. [5] and neglect the
mf 0 dependence of Tmla . As with the amplitude for Fig. 1,
the two-loop amplitude diverges quadratically, and we
follow the same subtraction procedure as in the one-loop
case. The corresponding, leading-log finite contribution to
the EDM is

C
f
5 � 2eC

ff 0

7

µ
MZ

LTVPC

∂2

Qf 0g
f 0

V g
f
A

µ
GFM2

Zp
2

∂

3

µ
1

8p2

∂2

ln
M2

Z

m2 , (7)

where g
f 0

V (g
f
A) is the vector (axial vector) coupling of the Z

to fermion f 0 ( f) and Qf 0 is the electric charge of fermion
f 0, with f 0 denoting the species of fermion in the closed
loop.

In the case of Fig. 2b, the closed fermion loop contains
the axial vector Z-fermion insertion, while the external
fermion couples to the Z through the vector current. The
closed fermion loop subgraph diverges quadratically and
must be renormalized by the appropriate MS counterterm
before the second loop integration is carried out. These
graphs receive contributions from both a photon insertion
on the line for fermion f (the external fermion) as well
as from the EM seagull vertex generated by the covariant
derivative in O

ff 0

7 . To leading-log order, the sum of the
amplitudes for Fig. 2b gives

C
f
5 � 2eC

ff 0

7

µ
5
12

∂ µ
MZ

LTVPC

∂2

Qfg
f
V g

f 0

A

µ
GFM2

Zp
2

∂

3

µ
1

8p2

∂2µ
ln

M2
Z

m2

∂2

, (8)
where as before f 0 is the fermion in the closed loop.
The appearance of the ln2 arises from the presence of
two subdivergences in the graphs of Fig. 2b, whereas the
closed fermion loop in Fig. 2a is finite. For ln�M2

Z�m2� �
1, the contribution in Eq. (8) will be of the same order as
that in Eq. (7). As we argue below, however, we expect
ln�M2

Z�m2� � 10, so that the graphs in Fig. 2b generally
give a somewhat larger contribution than those of Fig. 2a.

We emphasize that the LTVPC dependence appearing
in Eqs. (6)–(8) differs substantially from that obtained
in Refs. [5,6]. The reason is that the regulator used in
the calculation of Ref. [5] does not preserve the LEEFT
separation of scales and effectively mixes all orders in
the 1�LTVPC expansion. The two-loop integral containing
O

ff 0

7 was regulated by assuming this interaction arises
from the exchange of a hypothetical axial vector boson
of mass LTVPC having a nonrenormalizable coupling to
fermion f. The presence of the axial vector propagator
renders the loop integral finite. In effect, this propagator
functions as a form factor �p2�L

2
TVPC 2 1�21 which

contains an infinite power series in �p�LTVPC�2 with
predetermined (model-dependent) coefficients. To be
consistent, the effects of an infinite tower of higher-
dimension operators in Lnew must also be included in
tandem with this form factor, though as a practical
matter this was not done in the calculation of Ref. [5].
Furthermore, each operator in the tower will generate an
equally important contribution to the EDM, and truncation
at d � 7 will be unjustified.

This loss of power counting incurred by form factors can
be seen in the following example. Consider the tower of
operators

O712n � C
ff 0

712nc̄f
$
Dmg5cf�≠2�nc̄f 0gmg5cf 0 , (9)

where n � 0, 1, . . . . Inserting these operators into
the loops of Fig. 2 generates divergent contributions
to C5. Following the spirit of Ref. [5], we may
regulate the integrals by including the form factors
�p2�L

2
TVPC 2 1�2�n11�. Doing so is equivalent to repeat-

ing the calculation of Ref. [5] with additional factors of
�p2�L

2
TVPC�n�p2�L

2
TVPC 2 1�2n � 1 1 . . . in the loop

integrals. The first term of order unity generates the same
leading-log contribution as given in Ref. [5], while the
remaining terms (1 · · ·) generate finite contributions for
LTVPC ! `. At leading-log order, then, the contribution
from the entire tower of operators in Eq. (9) is propor-
tional to

P`
n�0 C

ff 0

712n. A similar conclusion follows if
a different form factor is used to cut the integrals off at
p � LTVPC; each of the C

ff 0

712n will contribute with a simi-
lar weight. Consequently, no information about the d � 7
interactions alone can be extracted from EDM limits.

In effect, the use of a form factor as in Ref. [5] allows
contributions from intermediate states having momenta
p � LTVPC, thereby blurring the separation of scales im-
plicit in the low-energy expansion of Eq. (1). Conse-
quently, the renormalization of O5 due to any d $ 7
3999
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operator is dominated by these high-momentum intermedi-
ate states—a feature reflected by the absence of the factors
�MZ�LTVPC�2 in the expressions of Ref. [5]. One there-
fore has no systematic power counting to justify truncation
at d � 7 in the expansion of Eq. (1). In contrast, the use
of DR and MS subtraction as above avoids these high-mass
contributions and maintains the power counting in L

21
TVPC

appropriate to the LEEFT separation of scales.
From the one- and two-loop results of Eqs. (6)–(8)

and the experimental limits on EDM’s, one may derive
conservative lower bounds on LTVPC. In the case of
O

ff 0

7 contributions, one must specify the fermion species
f 0 involved in the closed fermion loop. Since the
result in Eq. (7) is proportional to g

f 0

V , contributions
involving closed, charged lepton loops are suppressed by
g�2

V � 21 1 4 sin2uW � 0.1 with respect to quark loop
contributions. Consequently, we consider only the latter.
In this case, the constants relevant to the electron and
neutron EDM’s are Ceu

7 , Ced
7 , and Cud

7 . Moreover, since
jgu

V j and jgd
V j differ by less than a factor of 2, and since

the contributions from O
ff 0

7 to the EDM go as 1�L
3
TVPC,

the lower bounds on LTVPC from u-quark and d-quark
loops differ negligibly. For the results in Eq. (8), the
additional factor of ln�M2

Z�m2� renders the contribution
from Fig. 2b comparable in magnitude to that of Fig. 2a
when m is chosen as discussed below.

In the case of the neutron EDM, we use the quark
model to relate dn to the light quark EDM’s. Following
the procedures of Ref. [9], we obtain

dn �
1

LTVPC

Z
d3x

µ
u2 1

1
3

�2

∂ ∑
4
3

Cd
5 2

1
3

Cu
5

∏
,

(10)

where u and � are the upper and lower component quark
model radial wave functions, respectively. Using the
wave function normalization condition

R
d3x�u2 1 �2� �

1 and expression for the axial vector charge
R

d3x�u2 2
1
3 �2� � 3

5gA we obtain a value of �1�4� �1 1 6gA�5� �
0.63 for the integral in Eq. (10).

The use of Eqs. (6)–(8) to derive limits on LTVPC
requires a choice of renormalization scale m and assump-
tions regarding the constants C7. Since the typical mo-
mentum of a quark inside a nucleon is �LQCD , we take
m � LQCD for dn. The precise choice for this scale does
not affect the lower bounds on LTVPC appreciably, since
it enters only logarithmically. Consequently, we use the
same choice for the electron EDM, though a smaller scale
is likely more appropriate. The lower bounds on LTVPC
are similarly rather insensitive to the value of the constants
C7 assuming they fall within a natural range. Following
common conventions [2], we write C

ff 0

7 � 4pk2, where
k specifies the coupling strength of the new TVPC inter-
action (k2 � 1 for new strong interactions). We also take
C

gZ
7 � egC

ff 0

7 � 4pa� sinuWC
ff 0

7 , since one would ex-
pect C

gZ
7 to be suppressed with respect to C

ff 0

7 by the gauge
4000
couplings associated with the g and Z. With these con-
ventions, we obtain the following lower limits on LTVPC
from the experimental result jdej , 4 3 10227e cm [10]:
LTVPC * 150k2�3 TeV from the one-loop graph of Fig. 1
and LTVPC * 30k2�3 TeV from the two-loop graphs of
Fig. 2. The corresponding bounds from the neutron EDM
are somewhat weaker—given that the experimental limit
on jdnj is an order of magnitude larger than the limit on
jdej [11].

Finally, we note the implications of the EDM results
for low-energy measurements of TVPC observables. As
argued on dimensional grounds in Ref. [6], the ratio aT

should scale as C7�p�LTVPC�3, where p is a typical
momentum involved in low-energy hadronic interac-
tions. The experimental EDM limits constrain the ratio
C7�L

3
TVPC ~ k2�L

3
TVPC as discussed above. Conser-

vatively taking p � 1 GeV�c (low-energy hadronic
interactions are typically characterized by momentum
transfers of 1 GeV�c or less), our results imply that aT

should be of the order of 10215 or smaller, independent of
the choice of k. Presently, direct TVPC measurements—
such as compound nucleus studies of detailed balance and
neutron transmission experiments—yield limits of about
1023 for aT [3].
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