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We consider the implications of experimental limits on the permanent electric dipole moment (EDM)
of the electron and neutron for possible new time-reversal violating (TV) parity-conserving (PC) interac-
tions. We show that the constraints derived from one-loop contributions to the EDM exceed previously
reported two-loop limits by more than an order of magnitude and imply a lower bound on the new
TVPC mass scalé\tvpc Of 150 TeV for new TVPC strong interactions. These results imply a value
of 107'5 or smaller for the ratio of low-energy TVPC matrix elements to those of the residual strong
interaction.

PACS numbers: 11.30.Er, 14.20.Dh, 14.60.Cd

The search for physics beyond the standard model is an new dimension seven TVPC interactions is obtained
topic of ongoing interest for both high-energy colliders asfrom a two-loop contribution to the EDM, and the ex-
well as low-energy experiments involving atoms and nu-pected magnitude of low-energy TVPC observables was
clei. Although the standard model (SM) is enormouslyinferred. No attempt was made to derive a lower bound
successful in accounting for a plethora of electroweak datan Arypc. In what follows, we show that there exist ad-
of a broad range in energies, there exist strong theoretditional d = 7 operators not considered previously which
cal reasons for considering the standard model as an etontribute to the EDM at one-loop order and which gen-
fective theory—derived from some broader framework—erate more stringent lower bounds drvpc than those
applicable to physics below the weak scale. Among thelerived at two-loop order. We also revisit the analysis of
questions to be addressed in considering possible fram&ef. [5] and argue that it is inconsistent with the separa-
works is the mass scale associated with “new physics.” tion of scales and systematic power counting which under-
In this respect, experiments in atomic parity violationlies low-energy effective field theory (LEEFT). LEEFT
(APV) provide a powerful probe of new physics scenar-is the appropriate framework for analyzing the nonrenor-
ios which violate parity. Recently, the Boulder Group hasmalizable interactions of interest here. The corresponding
used APV to determine the weak cha@g of the cesium scale separation, which is preserved when loop integrals
atom [1]. The reported value f@yy, which differs from are regulated using dimensional regularization (DR), im-
the standard model prediction by 1.5%5(), implies the  plies a differentArypc dependence for the EDM than
existence of new parity-violating (PV) interactions with obtained in Ref. [5]. Using an explicit calculation, we
mass scaled py on the order of 1 TeV or greater [2]. obtain the correct scaling of the EDM withrvpc and

In this Letter, we consideArypc, the mass scale derive lower bounds oA rype under naturalness assump-
associated with possible new time-reversal violating (TV) tions for the coefficients of thd = 7 TVPC operators.
parity-conserving (PC) interactions. Explicit searches folWe find these bounds are significantly stronger than the
new TVPC effects at low energies have been carried oudcale Apy obtained from APV. Our results also imply
using studies of detailed balance in nuclear reactions [3; ~ 10~!5 or smaller, independent of any naturalness
and neutron transmission experiments [4]. These studiesssumptions.
imply that a7 < few X 1073, where a; gives the ratio Although the origins of possible new TVPC interactions
of typical TVPC nuclear matrix elements to those of theare not known, it has been shown that they cannot arise
residual strong interaction. The corresponding limits orvia tree-level boson exchange in a renormalizable gauge
the TVPC mass scale are weakiypc = 10 GeV. As theory [7]. Hence, one expects them to be generated
we argue below, significantly more stringent limits can beeither by loop effects or nonperturbative short-distance
inferred indirectly from searches for a permanent electridynamics. Consequently, it is convenient to describe
dipole moment of the electron and neutron. its low-energy consequences using effective Lagrangians.

It has been pointed out in a series of recent paperBollowing Ref. [6], we write
that the lowest-dimension flavor conserving TVPC inter-
actions have dimension seven [5,6]. Such interactions can 1 1

generate a permanent electric dipole moment (EDM) of an Loew = Lo+ Atvpe Ls + Avpe Ls
elementary fermion or its many-body bound states in the |

presence of a PV standard model radiative correction. It + 5L+ ..., (1)
was argued in these studies that the most restrictive limit Atvec
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where the subscripts denote operator dimension. The
TVPV EDM operator appearsin Ls:
— I S5 mv
05 = _5 Cs ‘po',uv')’S‘ﬁF . (2)

The TVPC operators considered in Refs. [5,6] appear
in Lq:

ff ff' 5 & 7
07" = C7" YD pysppppytysibyp, ©)

07° = C7* g0, A" YyF* G, 4

where f and f' are distinct fermionsand F,, and G, are
the photon and gl uon field strength tensors respect|vely

Both (9 and ©;* contribute to C5 at two-loop order,
athough only the contribution of the four-fermion interac-
tion has been computed explicitly previously. In addition,
we consider thefollowing TV PC operator appearingin L;:

z Z5 v
07" = 7" Yo, yF*Z}, (5)

where Z,,, is the Z-boson field strength tensor. As we

show below, (97yz contributes to C§ at one-loop order and
yields the strongest bound on Atvpc.

Implicit in the LEEFT expansion of L, inEqg. (1) isa
separation of scales. Short-distance effects (u = Atvec)
are subsumed into the renormalized operator coefficients
C,. In the present case, these short-distance effects are
not calculable, since the full theory for w = Arypc isun-
known. Long distance contributions (u =< Arypc) arise
from matrix elements of the effective operators O,, taken
between states containing only particles having masses
and momenta below Atypc. When these matrix elements
involve divergent loops containing the O, the use of DR
and modified minimal subtraction (MS) renormalization
preserves the LEEFT separation of scales by protecting
loop integrals from high-momentum (p = Atypc) con-
tributions. Preservation of the scale separation is critical
to maintaining the power counting (in 1/Atvpc) associ-
ated with Eq. (1). Moreover, it implies that renormaliza-
tion of @5 from loops containing the ®; must scae as
(M /Arvpc)?, where M is the mass of one of the particles
dynamically relevant for u < Atvypc.

We observe that if the parity symmetry broken by the
SM is not restored for scales u = Arvpc, then the coef-
ficient Cs must exist at tree level in the LEEFT. Since
both the SM PV interaction and the fundamental, but not
calculable, interactions which generate the d = 7 TVPC
interactions exist at such scales, there exists no reason
for them not to conspire in generating a nonvanishing Cs.
In this case, power counting implies that loops contain-
ing the O7 will generate subdominant contributions to Cs
(see below), so that the EDM limits cannot be used to
constrain d = 7 TVPC operators. At best, one may em-
ploy dimensional argumentsinvolving Cs to derived lower
bounds on Atypc. For example, taking Cs = 4mk2e
and using the present limits on the electron EDM, one
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obtains Atypc = 10'“«2 GeV. This bound is consider-
ably stronger than that obtained by the authors of Ref. [5],
who presume, incorrectly, to be able to calculate short-
distance effects via loops.

A more interesting scenario occurs when parity sym-
metry is restored above the weak scale but below Atypc
(eg., in a left-right symmetric scenario). In this case,
Cs; = 0 at tree level in the LEEFT and becomes non-
vanishing only through PV radiative corrections to the
d =7 (and higher) TVPC interactions. A conservative
lower bound on Arypc can be obtained by considering
the SM PV radiative corrections. The leading order con-
tributions to the fermion EDM arising from the TVPC
operators in L arise from the diagrams of Figs. 1 and
2. For simplic.itly, we consider only the effects of (977Z

(Fig. 1) and (97” (Fig. 2). The conclusions obtained from
the two-loop gluon-Z graphs will be similar. Following
Refs. [5,6], we also restrict our attention to neutral cur-
rent PV corrections. The diagrams diverge quadratically.
Following the standard practice of LEEFT, we regulate
the integrals using DR and subtract the pole terms |n the
MS scheme with the appropriate counterterm in C5 In
the case of Fig. 1, the PV effect arises from the axial vec-
tor Z-fermion coupling. In the leading-log approximation,

the resulting finite contribution to the EDM from O 7 s
f vz Mgz >2< 1 > f( 1 ) M3
C; ~ eC In—
7 <ATVPC swew 15\ 9672 wu?

(6)

where we have dropped terms quadratic in the fermion
mass, where gf; is the axial vector Zff coupling, and
where sy = sindy isthe sine of the Weinberg angle.

In the case of the two-loop contribution generated by

(97f / , the dominant terms arise from the graphs appear-
ing in Fig. 2. All other two-loop contributions contain-
ing this operator are suppressed by powers of my/My
where m; is a (light) fermion mass. Turning first to the
graphs of Fig. 2a, we note that the closed fermion loop
containing three insertionsisidentical to the triangle graph
appearing in the Adler-Bell-Jackiw anomaly. Here, the
vector current insertions are associated with the neutral
gauge bosons and the axial vector insertion arises from

Cf)ff . Denoting its nominally linearly divergent amplitude

Y

FIG. 1. Oneloop contributions to EDM of elementary
fermion . The ® denotes the operator ©7”.
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(b)

FIG. 2. Two-loop contributions containing (Off ’ (denoted by
®) to the EDM of elementary fermion f. (See text.)

THA« we choose the loop momentum routing to satisfy
q*Tyra = 0 = k*T 20, Where g, and k, are the photon
and Z-boson momenta, respectively. The result is finite.
We have verified that our result produces the textbook re-
sult for (¢ + k)T for k2 = ¢> = 0[8].

The remaining integration for the two-loop amplitude
of Fig. 2aisstraightforward. Sincethe amplitude contains
no infrared singularities, wefollow Ref. [5] and neglect the
my dependence of 7#4*. Aswiththeamplitudefor Fig. 1,
the two-loop amplitude diverges quadratically, and we
follow the same subtraction procedure as in the one-loop
case. The corresponding, leading-log finite contribution to
the EDM is

2 2
f i Mz r r(GrMz
C ~ _eC < ) Q / ( )
5 7 Avrc '8V 8A NG

1 2 2
X <—> |n@, 7)
872 /J«2

where g‘f/ (gf;) isthe vector (axial vector) coupling of the Z
to fermion 1’ () and Q- isthe electric charge of fermion
f', with £’ denoting the species of fermion in the closed
loop.

In the case of Fig. 2b, the closed fermion loop contains
the axia vector Z-fermion insertion, while the external
fermion couples to the Z through the vector current. The
closed fermion loop subgraph diverges quadratically and
must be renormalized by the appropriate MS counterterm
before the second loop integration is carried out. These
graphs receive contributions from both a photon insertion
on the line for fermion f (the external fermion) as well
as from the EM seagull vertex generated by the covariant

derivative in (97”1. To leading-log order, the sum of the
amplitudes for Fig. 2b gives

2
f ff! 5)( My )2 ! f/<GFMZ>
Cl~ —eCy | = —Z
5 eCy (12 T 0rgvga NG

(o) (m 35 @

where as before f/ is the fermion in the closed loop.
The appearance of the In? arises from the presence of
two subdivergences in the graphs of Fig. 2b, whereas the
closed fermion loop in Fig. 2aisfinite. For In(M%/u?) ~
1, the contribution in Eq. (8) will be of the same order as
that in Eq. (7). As we argue below, however, we expect
In(M%/u?) ~ 10, so that the graphs in Fig. 2b generally
give a somewhat larger contribution than those of Fig. 2a.

We emphasize that the Arypc dependence appearing
in Egs. (6)—(8) differs substantially from that obtained
in Refs. [5,6]. The reason is that the regulator used in
the calculation of Ref. [5] does not preserve the LEEFT
separation of scales and effectively mixes al orders in
the 1 /Atvpc expansion. The two-loop integral containing

Cf)ff was regulated by assuming this interaction arises
from the exchange of a hypothetical axial vector boson
of mass Arypc having a nonrenormalizable coupling to
fermion f. The presence of the axial vector propagator
renders the loop integral finite. In effect, this propagator
functions as a form factor (p2/A%vpc — 1)~! which
contains an infinite power series in (p/Arypc)? with
predetermined (model-dependent) coefficients. To be
consistent, the effects of an infinite tower of higher-
dimension operators in L., must also be included in
tandem with this form factor, though as a practica
matter this was not done in the calculation of Ref. [5].
Furthermore, each operator in the tower will generate an
equally important contribution to the EDM, and truncation
at d = 7 will be unjustified.

Thisloss of power counting incurred by form factors can
be seen in the following example. Consider the tower of
operators

ff/ R =¢ ny
O1120 = C1h0as D wyspr (02" IpyPysipp,  (9)

where n =0,1,.... Inserting these operators into
the loops of Fig. 2 generates divergent contributions
to Cs. Following the spirit of Ref.[5], we may
regulate the integrals by including the form factors
(p?/Adype — 1)~ Doing so is equivalent to repeat-
ing the calculation of Ref. [5] with additional factors of
(p%/Advec)" (p?/Atvee — 1)™" =1 + ... in the loop
integrals. Thefirst term of order unity generates the same
leading-log contribution as given in Ref. [5], while the
remaining terms (+ - --) generate finite contributions for
Arypc — . At leading-log order, then, the contribution
from the entire tower of operators in Eq. (9) is propor-

tiona to > _, C7ficz,,. A similar conclusion follows if
a different form factor is used to cut the integrals off at

p ~ Arvec; each of the 27, will contribute with asimi-
lar weight. Consequently, no information about thed = 7
interactions alone can be extracted from EDM limits.

In effect, the use of aform factor as in Ref. [5] alows
contributions from intermediate states having momenta
p ~ Arvec, thereby blurring the separation of scalesim-
plicit in the low-energy expansion of Eg. (1). Conse-
quently, the renormalization of Os due to any d = 7
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operator is dominated by these high-momentum intermedi-
ate states— a feature reflected by the absence of the factors
(Mz/Atvpc)? in the expressions of Ref. [5]. One there-
fore has no systematic power counting to justify truncation
a d = 7 in the expansion of Eq. (1). In contrast, the use
of DR and M'S subtraction as above avoids these high-mass
contributions and maintains the power counting in Avpc
appropriate to the LEEFT separation of scales.

From the one- and two-loop results of Egs. (6)—(8)
and the experimental limits on EDM’s, one may derive
conservatlve lower bounds on Atypc. In the case of
(97 contributions, one must specify the fermion species
f' involved in the closed fermion Ioop Since the

result in Eq. (7) is proportiona to gV, contributions
|nvoIV| ng closed, charged lepton loops are suppressed by
gy = —1 + 4sin*6y =~ 0.1 with respect to quark loop
contributions. Consequently, we consider only the latter.
In this case, the constants relevant to the electron and
neutron EDM’s are C5*, ¢¢¢, and C%?. Moreover, since
lg%| and |g?%| differ by Ies§than a factor of 2, and since
the contributions from @4’ to the EDM go as 1/A2vpc,
the lower bounds on Arypc from u-quark and d-quark
loops differ negligibly. For the results in Eqg. (8), the
additional factor of In(M2/u?) renders the contribution
from Fig. 2b comparable in magnitude to that of Fig. 2a
when u is chosen as discussed below.

In the case of the neutron EDM, we use the quark
model to relate d, to the light quark EDM’s. Following
the procedures of Ref. [9], we obtain

1 1 4 1
dn — d3 < 2 N €2> |:_ d _ u:| ,
Atvpc f T\ 3 3 € 3 <
(10)

where 1 and € are the upper and lower component quark
model radia wave functions, respectively. Using the
wave function normalization condition [ d3x(u®> + €%) =
1 and expression for the axial vector charge [ d3x(u?> —
162) = g, we obtain a value of (1/4)[1 + 6g,/5] =
0.63 for theintegral in Eq. (10).

The use of Egs. (6)—(8) to derive limits on Arypc
requires a choice of renormalization scale u and assump-
tions regarding the constants C;. Since the typica mo-
mentum of a quark inside a nucleon is ~Aqcp, we take
n = Aqcp for d,. The precise choice for this scale does
not affect the lower bounds on Arvypc appreciably, since
it enters only logarithmically. Consequently, we use the
same choice for the electron EDM, though a smaller scale
is likely more appropriate. The lower bounds on Atvpc
are similarly rather insensitive to the value of the constants
C7 assuming they fall within a natural range. Following

common conventions [2], we write C7ff = 47 k?, where
K specifies the coupling strength of the new TVPC inter-
actlon (k> ~ 1for new strong mteractlons) We also take

C7 ~ egC7 =47a/Sn0yCy 17 since one would ex-
pect C7 to be suppressed with respect to C{f by the gauge
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couplings associated with the v and Z. With these con-
ventions, we obtain the following lower limits on Atypc
from the experimental result |d,| < 4 X 107%"¢ cm [10]:
Atvpe = 150«%3 TeV from the one-loop graph of Fig. 1
and Arype = 30«23 TeV from the two-loop graphs of
Fig. 2. The corresponding bounds from the neutron EDM
are somewhat weaker—given that the experimenta limit
on |d,| is an order of magnitude larger than the limit on
|d.| [11].

Finally, we note the implications of the EDM results
for low-energy measurements of TVPC observables. As
argued on dimensional grounds in Ref. [6], the ratio ar
should scale as C7(p/Arvec)’, where p is a typical
momentum involved in low-energy hadronic interac-
tions. The experimental EDM limits constrain the ratio
C7/Avpe = k2/Adype as discussed above. Conser-
vatively taking p = 1 GeV/c (low-energy hadronic
interactions are typically characterized by momentum
transfers of 1 GeV/c or less), our results imply that ar
should be of the order of 10~!> or smaller, independent of
the choice of x. Presently, direct TVPC measurements—
such as compound nucleus studies of detailed balance and
neutron transmission experiments—yield limits of about
1073 for ar [3].

It is a pleasure to thank G. Dunne, W. Haxton,
and M. Savage for useful discussions. This work was
supported in part by a Nationa Science Foundation
Young Investigator award and Department of Energy
Contract No. DE-AC05-84ER40150.

[1] S.C. Bennett and C. E. Wieman, Phys. Rev. Lett. 82, 2484
(1999); C.S. Wood et al., Science 275, 1759 (1997).

[2] M.J. Ramsey-Musolf, Phys. Rev. C 60, 015501 (1999).

[3] See W.C. Haxton, A. Hoéring, and M.J. Musolf, Phys.
Rev. D 50, 3422 (1994), and references therein.

[4] J.E. Koster et al., Phys. Lett. B 267, 23 (1991).

[5] R.S. Conti and |.B. Khriplovich, Phys. Rev. Lett. 68, 3262
(1992).

[6] J. Engel, P.H. Frampton, and R. S. Springer, Phys. Rev. D
53, 5112 (1996).

[7] P. Herczeg, J. Kambor, M. Simonius, and D. Wyler, “Par-
ity conserving time reversa violation in flavor conserving
quark-quark interactions,” Las Alamos Theory Division
report (unpublished); P. Herczeg, Hyperfine Interact. 75,
127 (1992). See dso P. Herczeg, in Symmetries and
Fundamental Interactions in Nuclei, edited by W. Haxton
and E. Henley (World Scientific, Singapore, 1995), p. 89.

[8] See, eg., C. Itzykson and J.B. Zuber, Quantum Field
Theory (McGraw-Hill, New York, 1980)

[9] J.F. Donoghue, E. Golowich, and B.R. Holstein, Phys.
Rep. 131, 319 (1986).

[10] E. Commins et al., Phys. Rev. A 50, 2960 (1994); see also
K. Abdullah et al., Phys. Rev. Lett. 65, 2347 (1990); S.A.
Murthy, et al., Phys. Rev. Lett. 63, 965 (1989).

[11] I.S. Altarev et al., Phys. Lett. B 276, 242 (1992); K.F.
Smith et al., Phys. Lett. B 234, 191 (1990).



