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Global Dynamics of Charged Dust Particles in Planetary Magnetospheres
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We study the global stability of charged dust grains orbiting an axisymmetric planet. The corotating
magnetic field and induced electric field are described in an inertial frame using the magnetic
stream function and a two-dimensional effective potentialUe, parametrized by the conserved angular
momentumpf. Stable equilibria form the centers of complex potential wells, so that a particle
which loses local stability can still be trapped globally. Applying the results to Saturn, we find that
nonequatorial “halo” orbits are dominated by positively charged grains.

PACS numbers: 96.30.Wr, 45.20.Jj, 96.35.Kx
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The dynamics of planetary rings continues to prese
surprises and challenges to celestial mechanics. Ear
Voyager, Ulysses, and Galileo observations revealed co
plex dust rings around all four outer gaseous planets; n
the impending visit of the Cassini orbiter promises t
yield even more detailed information on Saturn’s magn
tosphere. Although much work has been done on the s
bility of charged dust grains [1–6], these studies have be
largely limited to negatively charged particles in prograd
(corotating) equatorial orbits [1], or neglect perturbation
transverse to the equatorial plane [3]. Furthermore, the
are ample theoretical and experimental grounds [7] for t
presence of positively charged grains as well. In this Le
ter we carry out local and global stability analyses for bo
positively and negatively charged grains, in both progra
and retrograde orbits about an axisymmetric planet, an e
cellent approximation for Saturn and a fair approximatio
for Jupiter. We shall be primarily concerned with equa
torial orbits about Saturn; future publications will include
applications to Jupiter’s rings, as well as the rather comp
cated dynamics of nonequatorial equilibria [8]. Our phys
cal model includes Keplerian gravity, corotating planeta
magnetic field (taken to be an aligned centered dipo
with concomitant induced electric field. For single particl
dynamics over the short time scales envisioned here, it
reasonable to neglect radiation pressure, plasma drag, p
etary oblateness, charge fluctuations, and collective effe
[5]. The combined gravitational, magnetic, and electr
forces are conveniently modeled by a two-dimensional e
fective potentialUe, parametrized by the conserved angu
lar momentumpf.

The contour plots ofUe�r, z� provide a vivid pic-
ture of the global confinement of charged dust grain
Thus, the critical points ofUe locate the circular orbits,
nonequatorial as well as equatorial. Standard methods th
yield Lyapunov (nonlinear) stability boundaries [9] in a
two-dimensional parameter space, to be described belo
Moreover, the stable equilibria form the centers of po
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tential wells, which can contain large populations of pa
ticles. These potential wells have their own topologica
structures, so that a particle which loseslocal stability may
still be trappedglobally. Knowledge of local and global
bifurcations for the four basic cases (positive or negativ
charge, prograde or retrograde orbits) allows one to pr
dict the possible constituents of “halo” orbits, i.e., thos
that encircle the planet entirely above or below the equat
rial plane. Positively charged grains are found to posse
stable nonequatorial orbits, both prograde and retrograd
for a wide range of charge-to-mass ratioq�m. Negatively
charged grains, on the other hand, form stable halo orb
only for very small grains at very high latitudes.

For a spherical dust grain of uniform density
rm �g�cm3�, radius am �microns�, and a surface po-
tential ofF (volts),

q
m

�
106F

4prma2
m

esu�g . (1)

We shall takerm � 1 g�cm3. Typical values ofF for
Jupiter and Saturn lie in the range220 , F , 110 V
[7]. For a given planet and equilibrium radius, stability
depends onq�m alone, conveniently measured by the
parameterF̂ � F�a2

m, which we express as a pure
number. Since the potential is determined by the ambie
plasma,F̂ depends only on the grain radiusam. An upper
bound onF̂ is thus a lower bound onam, forming a
sort of dynamical sieve. Roughly speaking, grains wit
am . 1 are gravity dominated, while those witham , 1
are dominated by electromagnetic forces.

Hamiltonian model.—Our starting point is the inertial
frame Hamiltonian, in Gaussian units and cylindrica
coordinates (r, f, z)

H �
1

2m
�p2

r 1 p2
z � 1

1
2mr2

√
pf 2

q
c

C

!2

1 U 1
qV

c
C , (2)
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where pf � mr2 �f 1 qC�c is the conserved angular
momentum, U�r, z� is the gravitational potential, and
C�r, z� � rAf is the stream function. The induced
electric field can then be written E �

1
c V=C, where V

is the planetary spin rate. Notice that the electric field
is meridional and everywhere normal to the magnetic
field. For Keplerian gravity U � 2mm�r , where r �p

r2 1 z2 and m � GMp . For a centered dipole C �
Mr2�r3, with dipole strength M � B0R3

p , where B0 is
the magnetic field strength on the planetary equator and
Rp is the planetary radius. Thus

H �
1

2m
�p2

r 1 p2
z � 1 Ue�r, z� (3)

with effective potential

Ue �
1

2mr2

√
pf 2

gr2

r3

!2

2
mm
r

1
Vgr2

r3 , (4)

where now pf � mr2 �f 1 gr2�r3 and g � qM�c
measures the relative strength of the dipole field.

Measuring r and z in units of Rp , (4) becomes

Ue �
1

2r2

√
pf 2

vcr2

r3

!2

2
v

2
k

r
1

Vvcr2

r3 (5)

with scaled angular momentum pf � r
2
0

�f 1 vcr
2
0�r3

0 .
Here vc � qB0�mc and vk �

p
m�R3

P are the cyclotron
and Kepler frequencies, both evaluated at a point on the
planetary equator. For Saturn Rp � Rs � 60 300 km,
Ms � 5.688 3 1026 kg, B0 � 0.210 G, and V � 1.691 3

1024 rad�s [7], so that vk � 4.160 3 1024 rad�s.
Equilibria.—Equilibria (r0, z0) are given by Ue

r �
Ue

z � 0, where subscripts denote partial derivatives. For
equatorial equilibria (z0 � 0), pf � r

2
0v 1 vc�r0, so

that the radial equation yields a quadratic in v:

r3
0v2 2 vcv 2 �v2

k 2 vcV� � 0 (6)

whose solutions are given by

2r3
0v1,2 � vc 6

p
v2

c 1 4r3
0�v2

k 2 vcV� . (7)

For positive charge (vc . 0) there are three possibilities:
(i) vcV , v

2
k (Keplerian regime), v1 . 0, v2 , 0;

(ii) vcV . v
2
k (magnetic regime), v1, v2 . 0;

(iii) vcV � v
2
k (transition case), v1 � vc, v2 � 0.

We shall refer to the v2 branch as “semiretrograde,”
as it is retrograde only for large q�m. In the magnetic
case there is a cutoff when v2

c � 4r
3
0�vcV 2 v

2
k �, which

is itself a quadratic in vc. It is easily seen that this
inner quadratic has real roots only for r0 . �vk�V�2�3,
i.e., the synchronous radius, rs. A “magnetic stopband”
exists for r0 . rs � 1.822Rs, forming two disjoint loci,
as shown in Fig. 1. In addition, case (iii) reveals the
existence of a static equilibrium, which will prove to be
unstable. For negative charge, replacing vc with 2vc

in (7) shows that there is only one case to consider;
v1 . 0, v2 , 0. In contrast to positive charge, there
is no cutoff; a pair of prograde-retrograde orbits exist
3994
FIG. 1. Orbital frequencies v1,2 as functions of vc�vk for
(a) r0 , rs and (b) r0 . rs. Asymptotes are shown as
dashed lines.

everywhere on the equatorial plane. Figure 1 plots v1�vk

and v2�vk for r0 � 1.5 and 2.0 (inside and outside rs) as
functions of vc�vk for both positive and negative charge.
Note that when vc ! 0, v1 ! vk�r

3�2
0 , the local Kepler

frequency. For r , rs, in the limit of large positive
q�m, v1 ! vc�r

3
0 , the local cyclotron frequency, while

v2 ! V. These limits are all unstable. For large negative
q�m, v1 ! V, while v2 ! 2vc�r

3
0 . The stability of

these orbits will be discussed below.
Contour plots of Ue�r, z� are calculated with pf ref-

erenced to a desired equilibrium orbit at (r0, 0). Fig-
ures 2(a) and 2(b) show level sets of Ue for positively

FIG. 2. Contour plots of Ue for positively charged grains in
prograde orbits about Saturn, for r0 � 2Rs and (a) F̂ � 400,
(b) F̂ � 650; and r0 � 4Rs, with (c) F̂ � 800, (d) F̂ � 850.
In the upper pair stability is lost via a tangent bifurcation; in
the lower pair an orbit can remain trapped in an outer well even
though local stability is lost via a pitchfork bifurcation.
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charged grains in prograde orbits about Saturn, with r0 �
2Rs. When F̂ � 552.6 there is a tangent bifurcation, in
which the local minimum at r0 � 2Rs becomes a saddle.
As can be seen from Fig. 2(b), when F̂ � 650 nearby
orbits are rapidly lost, impacting the planet in a mat-
ter of hours. For larger r0 the mode of destabilization
is quite different, as depicted in Figs. 2(c) and 2(d) for
r0 � 4Rs. Here there is a pitchfork bifurcation when
F̂ � 817.02, in which a pair of nonequatorial potential
wells is formed. In this case, locally unstable orbits can
remain confined within a larger energy surface, as seen in
Fig. 2(d) (F̂ � 900). This clearly illustrates the hazards
of relying on local stability thresholds; one must also ex-
amine the topology of nearby energy surfaces.

Stability.—An equatorial equilibrium is Lyapunov
stable [9,10] if both Ue

rr , Ue
zz . 0. Explicit stability

boundaries may be found by eliminating v between
Ue

r � 0 and Ue
rr , Ue

zz � 0 at an equilibrium point. The
results are, for positively charged grains in prograde orbits
(v � v1),

Ue
rr � 0: rc �

�5 1 3
p

3�1�3j2�3

�1 2 Vj�vk�1�3 , (8)

where j � vc�vk , vk�V and

Ue
zz � 0: rc �

61�3j2�3

�1 2 3Vj�vk�2�3 , (9)

where j , 3vk�V. The algebraic details and correspond-
ing results for nonequatorial equilbria will be reported else-
where [8]. The stability boundaries rc�j� for positive
charge are plotted as the solid curves in Fig. 3(a). The
stable region is the area to the left of these two curves,
which intersect at the point

j� �

√
5 2 2

p
3

3

!
vk

V
,

r�

Rs
�

√
19 1 8

p
3

6

!1�3√
vk

V

!2�3

.

(10)

For Saturn v�
c�vk � 1.259 (F̂� � 939.8), and r� �

3.212Rs, which lies beyond the orbit of Mimas, in
the E-Ring. Thus, as F̂ is increased, for r , r� the
radial stability boundary is encountered first, while for
r . r� the transverse stability boundary is crossed first.
This accounts for the metamorphoses of the contour
plots observed in Fig. 2. Note that there are no stable
equatorial equilibria at all for F̂ . 939.8. Also note that
the transverse stability boundary approaches r`�Rs �
�2�3�1�3�vk�V�2�3 � 1.592 for large q�m.

Interesting things happen near the intersection point.
Figure 4 shows a contour plot for r � 3.212 and F̂ �
939.8, revealing coexisting equatorial and nonequatorial
wells, along with a typical trapped halo orbit. The
appearance and disappearance of these intricate structures
can be accounted for by careful examination of the full
Hessian matrix [8].
FIG. 3. Stability diagram for equatorial orbits about Saturn
for (a) positive charge and (b) negative charge. Boundaries for
saddle-node (tangent) bifurcations are labeled “sn,” while those
for pitchfork bifurcations are labeled “pf.”

For semiretrograde orbits (v � v2) the results are

Ue
rr � 0: rc �

�3
p

3 2 5�1�3j2�3

�Vj�vk 2 1�1�3 , (11)

where j . vk�V and

Ue
zz � 0: rc �

61�3j2�3

�1 2 3Vj�vk�2�3 , (12)

FIG. 4. Contour plot of Ue for positively charged grains in
prograde orbits about Saturn near the doubly degenerate point.
A halo orbit is depicted in the upper potential well.
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where j , 3vk�V. Static equilibria (v2 � 0) are un-
stable to transverse perturbations. The stability bounda-
ries for positive retrograde orbits are shown as the dashed
curves in Fig. 4(a). The stable region is the region to the
left of the leftmost Ue

zz � 0 curve. For r . rs a sec-
ond stable region exists for very large j, owing to the
fact that both the Ue

rr � 0 and Ue
zz � 0 boundaries attain

local minima. In this region both v1 and v2 are prograde;
the slower mode is stable for F̂ . 10 000. For a plasma
potential of 10 V this corresponds to dust grains smaller
than a � 30 nm (corresponding to about 200 elementary
charges).

Now consider negative charge (vc , 0). Taking j �
2vc�vk , the transverse stability boundary (9) becomes

rc �
61�3j2�3

�1 1 3Vj�vk�2�3 . (13)

It can be shown that only prograde orbits can reach this
stability boundary; retrograde orbits are always stable to
transverse perturbations. Similarly, the radial stability
boundary is given by (8) with j � 2vc�vk :

rc �
�5 1 3

p
3�1�3j2�3

�1 1 Vj�vk�1�3 (14)

which turns out to be the stability boundary for retrograde
orbits. Prograde negative particles are everywhere stable
to radial perturbations. Figure 3(b) depicts the stability
boundaries for negative charge. Prograde orbits are stable
everywhere above the lower curve (Ue

zz � 0), while
retrograde orbits are stable everywhere above the upper
curve (Ue

rr � 0). These results agree with those of
Northrop and Hill [1] for prograde negative charge but
differ essentially from those of Mendis et al. [3], who
neglect transverse perturbations. While Xu and Houpis
[4] carry out a three-dimensional perturbation analysis,
their approach focuses on finding equilibria near a given
point, rather than deriving explicit stability boundaries.

Figure 5 presents contour plots for negatively charged
grains in prograde orbits about Saturn, for r0 � 1.5
and F̂ � 2000 and 8000. Here stability is lost via an
inverse pitchfork bifurcation, as predicted by (14). For
r0 . 1.592 all prograde equatorial orbits are stable. For
retrograde orbits stability is lost via a tangent bifurcation,
in a manner similar to that seen in Fig. 2 for positive
prograde orbits. We are currently carrying out a full
stability analysis for halo orbits [8]. Preliminary results
3996
FIG. 5. Contour plots of Ue for negatively charged grains
in prograde orbits about Saturn, with r0 � 1.5Rs and
(a) F̂ � 2000 and (b) F̂ � 8000. When F̂ � 6500 the
elliptic critical point at r0 � 1.5 destabilizes in an inverse
pitchfork bifurcation. As no outer potential well exists nearby
orbits are lost to the planet.

indicate that, while stable nonequatorial equilibria are
easily found for positively charged grains, negatively
charged grains form stable halos only for very small
particles at high latitudes.

We are grateful to Holger Dullin for helpful dis-
cussions. This work was supported by NASA Grants
No. NAG5-4163 and No. NAG5-4343.

[1] T. G. Northrop and J. Hill, J. Geophys. Res. 87, 6045
(1982).

[2] E. Grüen, G. E. Morfill, and D. A. Mendis, in Planetary
Rings, edited by R. Greenberg and A. Brahic (University
of Arizona Press, Tuscon, 1984).

[3] D. A. Mendis, J. R. Hill, W.-H. Ip, C. K. Goertz, and
E. Grüen, in Saturn, edited by T. Gehrels and M.
Matthews (University of Arizona Press, Tuscon, 1984).

[4] R.-L. Xu and L. F. Houpis, J. Geophys. Res. 90, 1375
(1985).

[5] L. Schaffer and J. A. Burns, J. Geophys. Res. 100, 213
(1995).

[6] D. Hamilton, Icarus 101, 244 (1993).
[7] M. Horányi, Annu. Rev. Astron. Astrophys. 34, 383

(1996).
[8] M. Horányi, H. R. Dullin, and J. E. Howard (to be

published).
[9] V. I. Arnold, Mathematical Methods of Classical Mechan-

ics (Springer, New York, 1980), 2nd ed.
[10] J. E. Howard, Celest. Mech. 74, 19 (1999).


