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Triangular Trimers on the Triangular Lattice: An Exact Solution
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A model, consisting of triangular trimers on the triangular lattice is presented. In analogy to the dimer
problem, these particles cover the lattice completely without overlap. The model has a honeycomb
structure of hexagonal cells separated by rigid domain walls. The transfer matrix can be diagonalized
by a Bethe Ansatz with two types of particles. This leads to an exact expression for the entropy on a
two-dimensional subset of the parameter space.

PACS numbers: 05.50.+q, 05.70.−a
In the course of years many exactly solvable lattice
models have been found. Relatively few of them admit
a natural interpretation as a lattice gas. The Ising model
[1], proposed in 1920 by Lenz [2] as a model of a
ferromagnet, can be interpreted as a lattice gas with hard-
core repulsion and short-range attraction. The (zero-field,
square-lattice) Ising model was solved in 1944 by Onsager
[3]. It exhibits gas-liquid coexistence below a critical
temperature and a single fluid phase above.

Another lattice gas is the hard hexagon model [4],
solved in 1980 by Baxter [5]. It has a continuous fluid-
solid transition. At high density (solid) the particles
select one of three sublattices; at low density (fluid) these
sublattices are evenly occupied.

As a final example we mention the dimer problem. It
was solved for planar lattices in 1961, independently by
Kasteleyn [6] and by Temperley and Fisher [7]. A dimer
is a particle that occupies two adjacent lattice sites. As
in the Ising and the hard hexagon model two particles
cannot occupy the same lattice site. In contrast to these
models it is also required that all sites are occupied.
The configurations are coverings of a lattice with dimers,
without empty sites or overlap. The dimer problem is
reviewed in Ref. [8]. We discuss the dimer model on the
honeycomb lattice in some detail, because it has illustrative
similarities to a new model we shall introduce below.

A configuration of the honeycomb-lattice dimer model
can be viewed as a number of domains consisting of
vertical dimers, separated by zigzagging domain walls
made up of dimers of the other two orientations. This
is illustrated in Fig. 1. The domain walls run from the
bottom to the top of the lattice, so that any horizontal line
through the system meets all domain walls once. Hence
the number of domain walls is the same in each horizontal
slice; in other words, it is a conserved quantity.

Consider the entropy for fixed density r of domain-
wall dimers. From the exact solution of the model it can
be calculated that for low r the entropy per dimer is given
by

S � �log2�r 2
p2
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The linear term reflects the zigzag freedom of the domain
walls; each domain-wall dimer contributes log2 to the en-
tropy. The cubic term is due to the (repulsive) interaction
between the domain walls: when two domain walls meet,
some of the zigzag freedom is lost [9,10].

Now give chemical potentials m to the dimers in
the domain walls and 0 to the vertical dimers. For
m # 2 log2 the free energy F � 2mr 2 S�r� is an
increasing function of r for small r, so no domain
walls will be present. For m * 2 log2 the free energy
has a minimum at some small positive value of r. At
m � 2 log2 there is a transition between a frozen phase
consisting of vertical dimers only and a disordered phase
where dimers of all three orientations are present.

Inspired by the dimer model we consider the coverings
of the triangular lattice by triangular trimers. A trimer
is a particle that occupies three lattice sites. As in the
dimer problem we require that there are no empty sites
and that there is no overlap. Figure 2 shows a typical
configuration. In this Letter we present our main results
on this model. We intend to publish a more detailed
account later [11].

The model admits very regular configurations where the
trimers occupy a sublattice of the triangular faces. There
are six such sublattices, which we number 0, 1, . . . , 5
as indicated in Fig. 2. Note that the up and down

FIG. 1. The dimer model on the honeycomb lattice. Domains
of vertical dimers are separated by domain walls consisting of
dimers of the other two orientations. To guide the eye the
domain walls are shaded.
© 1999 The American Physical Society
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FIG. 2. A typical configuration of the trimer model. Each
lattice site belongs to precisely one trimer. We divide the
lattice faces into six sublattices, numbered 0, 1, . . . , 5. Filling
one sublattice completely and leaving the other five empty give
a very regular configuration of the model.

triangles make up the even-numbered and odd-numbered
sublattices, respectively.

Consider configurations where trimers on sublattice 0
predominate. They cover hexagonal domains of trimers
on this sublattice, separated by straight domain walls that
form an irregular honeycomb network. There are three
types of domain walls, of different orientations. The
domain walls which run from lower right to upper left will
be termed L; they are made up of trimers on sublattice
5. Those running from lower left to upper right will be
called R; they consist of trimers on sublattice 1. The
vertical domain walls are made up of trimers on sublattice
3. When domain walls of the three different types meet
in a Y shape, but not an upside-down-Y shape, a trimer
on sublattice 2 or 4 occurs. This is illustrated in Fig. 3.

For the time being we require that the model be
isotropic, in the sense that there are equal amounts of the

FIG. 3. The trimer model has three types of domain walls,
corresponding to the three odd-numbered sublattices. The
trimers on sublattice 0 are shaded dark grey; the trimers on
the other sublattices are shaded light grey, and their sublattice
number is given.
three types of domain walls. Let r denote the density
of domain-wall trimers. The domain walls are rigid, so
they have no zigzag freedom contributing to the entropy.
Therefore the low-density expansion of the entropy con-
tains no term linear in r. There is, however, freedom in
the sizes of the domains [12]. For example, it is possible
to enlarge a single domain while simultaneously shrink-
ing its six neighbors. The contribution to the entropy per
domain depends on the linear dimensions of the domains,
and is roughly proportional to 2 logr. The number of
domains is approximately proportional to r2. Hence the
“breathing” entropy is given for low r by

S � 2Kr2 logr , (1)

where K is some (positive) proportionality constant.
If a chemical potential m is given to the domain-wall

trimers, the free energy for low r is

F � 2mr 1 Kr2 logr .

This is an increasing function of r for m , 0 and a
decreasing function for m $ 0. Hence the free energy
takes its minimum either at r � 0 or at a large value of
r, for which the approximation (1) is not valid. For small
m there are no domain walls, but, when m passes some
threshold, r jumps to a positive value. Thus the phase
transition is different from that in the honeycomb-lattice
dimer model, where the domain-wall density increases
continuously at the phase transition.

Now we return to the model without the isotropy
requirement. Let N denote the total number of trimers,
Ni the number of trimers on sublattice i, and ri the partial
density Ni�N . These six sublattice densities obviously
satisfy

r0 1 r1 1 r2 1 r3 1 r4 1 r5 � 1 . (2)

It can be shown that, when toroidal boundary conditions
are imposed, they also satisfy

r0r2 1 r2r4 1 r4r0 � r1r3 1 r3r5 1 r5r1 . (3)

When the total density of down trimers r= � r1 1

r3 1 r5 is small, it follows easily from (2) and (3) that
one of r0, r2 and r4, say r0, is larger than the other
two. If there is no further symmetry breaking, one has
r0 . r1 � r3 � r5 . r2 � r4. By the same token,
when r= is close to 1, the symmetry between the down
sublattices is broken. Therefore, when r= is increased
from 0 to 1, at least one phase transition is expected.

Besides (2) and (3), we have found no more constraints
on the sublattice densities. Therefore of the six sublattice
densities, four are independent. We would like to know the
entropy (per trimer) as a function of these four parameters.
We have been able to compute it for a two-dimensional
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subset of the four-dimensional parameter space. The
calculation is rather lengthy, so here we only give an
outline of the method, and a description of the final result.

View each vertical domain wall as a combination of one
L domain wall and one R domain wall. Then the L and R
domain walls run without interruption from the bottom to
the top of the lattice. Therefore the number of L domain
walls and the number of R domain walls are constant
throughout the system. This is analogous to the situation
described above for the dimer model on the honeycomb
lattice, except that there are now two conserved quantities,
nL and nR , instead of a single one. We introduce the
densities rL � nL�L and rR � nR�L, where 3L is the
number of sites in a horizontal row of the lattice. They
can be expressed in terms of the sublattice densities,

rL � 1 2 r0 2 r1 1 r3 1 r4 ,

rR � 1 2 r0 1 r2 1 r3 2 r5 .

It is suggestive to interpret the vertical lattice direction
as “time” and the horizontal direction as “space.” The
domain walls are then viewed as world lines of two types
of particles, L and R. In a vertical domain wall, one L
and one R particle form a “bound state.”

The model can be formulated in terms of a transfer ma-
trix, which describes the time evolution of the system of L
particles and R particles in one space dimension. Solving
the model boils down to determining the largest eigen-
value of this operator, or more precisely, its maximum
over all particle numbers nL and nR . We have achieved
this by using coordinate Bethe Ansatz; the solution is
similar to that of the square-triangle random tiling model,
due to Widom [13] and Kalugin [14]. A model can be
solved in this way only if, in some sense, the many-
particle interactions factorize into two-particle interac-
tions. It turns out that for the present model this is indeed
the case. It is noteworthy that the L particles among each
other are free fermions, as are the R particles, but that the
interaction between an L and R particle is nontrivial.

The Bethe Ansatz allows for numerical computations
for the system on an infinitely long cylinder of finite cir-
cumference. These computations can be done to arbitrary
precision, and effectively for the full four-dimensional pa-
rameter space of the model. In the thermodynamic limit
the Bethe Ansatz gives rise to a set of two coupled inte-
gral equations. The physical quantities we are interested
in, such as the sublattice densities ri and the entropy,
can be expressed in terms of the functions satisfying these
equations. These can be solved analytically in a special
case [14]. Thus we have obtained an exact expression for
the entropy of a two-dimensional family of sublattice den-
sities. It will be seen below that this family is given by
r1 � r3 � r5 (or r0 � r2 � r4).

This solution is parametrized by a complex number b̂
with Imb̂ . 0. Write

b̂ � bL 2 b21
L � bR 2 b21

R (4)
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with RebL $ 0 and RebR # 0. It follows that ImbL . 0,
ImbR . 0, and bLbR � 21. Take contours CL and DL

running from b�
L to bL, and CR and DR running from

bR to b�
R . The arrangement of these four curves must be

as shown in Fig. 4, but their precise shape is immaterial.
Other solutions, corresponding to contour configurations
different from that in Fig. 4, result from symmetry opera-
tions permuting the six sublattices. Define the complex
function

t�z� �

µ
z 2 z21 2 b̂

z 2 z21 2 b̂�

∂1�6

.

Fix a branch tL�z� with branch cuts CR and DL by
tL�0� � exp�pi�3�, and a branch tR�z� with branch cuts
CL and DR by tR�0� � exp�2pi�3�. The domain-wall
density rL is given by

rL �
1

2pi

Z
CL

tL�z� 1 tL�z�21

z
dz ,

and rR is given by the same equation with all subscripts
L changed to R. The sublattice densities are

r0 � 1 2
1
2 �rL 1 rR� 1

1
6 �r2

L 2 rLrR 1 r2
R� ,

r2 �
1
2 �rR 2 rL� 1

1
6 �r2

L 2 rLrR 1 r2
R� ,

r4 �
1
2 �rL 2 rR� 1

1
6 �r2

L 2 rLrR 1 r2
R� ,

ri �
1
6 �rL 1 rR� 2

1
6 �r2

L 2 rLrR 1 r2
R� for odd i .

(5)

Define auxiliary integrals fL and SL by

fL �
1
2

Re
Z 2b21

L

bL

tL�z� 1 tL�z�21

z
dz ,

SL �
1
4

Re
Z `

0

tL�z� 1 tL�z�21 2 1
z

dz .

FIG. 4. The exact expression for the entropy is formulated
in terms of contour integrals. The curves CL and DL in the
right half plane are deformations of the line segment joining bL
and b�

L, and CL lies to the right of DL. No orientation of DL
needs to be specified because it does not occur as an integration
contour but only as a branch cut. Analogous remarks apply to
CR and DR .



VOLUME 83, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 15 NOVEMBER 1999
The real parts of these integrals do not depend on the
choice of the integration contours, which must not meet
the branch cuts CR and DL. The auxiliary integrals fR

and SR are defined analogously. The entropy per trimer
is given by

S � SL 1 SR 1
1
6 �2rR 2 rL�fL 1

1
6 �2rL 2 rR�fR .

We started out with the model parametrized by the six
sublattice densities satisfying the constraints (2) and (3).
The exact solution described above has two parameters,
so it covers a two-dimensional set of sublattice densities.
The solution is, however, parametrized by a complex
number b̂, and not in terms of these densities. It follows
from (5) that r1 � r3 � r5 for the exact solution. The
space of sublattice densities satisfying this constraint as
well as (2) and (3) is two dimensional.

When b̂ tends to a point on the real axis the domain-
wall densities rL and rR tend to zero. From the exact
solution it can be calculated that in this limit rL �
r= 1 O�r

2
=� and rR � r= 1 O�r2

=�, and

S � 2
1
3 r

2
= logr= 1 O�r

2
=� .

This confirms the validity of (1) for the trimer model and
explicitly gives the coefficient K , which is independent of
the relative densities of the sublattice-2 and the sublattice-
4 trimers. At b̂ � 2i the system is in a symmetric phase
with all sublattice densities equal to 1�6; its entropy is
Ssym � log�3

p
3�4�. When b̂ is taken between 0 and

2i on the imaginary axis, bL and bR lie on the unit
circle. Then rL � rR , so the sublattice densities satisfy
r2 � r4. For small r= # 1�2 this equation together
with r1 � r3 � r5, describes the most symmetric case
for the sublattice densities. Based on numerical Bethe
Ansatz calculations we believe that, for a given r= # 1�2
the system takes its maximum entropy at these sublattice
densities. Figure 5 shows the entropy S as a function of
r=. The entropy for r= $ 1�2 was obtained from that
for r= # 1�2 using the symmetry between the up and the
down trimers.

The entropy S is a convex function of r= for 0 #

r= # 1�2. A system with r= in this interval is ther-
modynamically unstable. It would separate into a phase
with r= � 0 and a phase with r= � 1�2, except for the
fact that the model does not admit an interface between
these two phases. Similarly a system with 1�2 # r= # 1
would demix into phases with r= � 1�2 and r= � 1.

The transition between these phases can also be con-
trolled by assigning a chemical potential m to the down
FIG. 5. The entropy per trimer versus the density r= of down
trimers in the special case of r1 � r3 � r5 and r2 � r4 for
r= # 1�2, and similarly for r= $ 1�2.

trimers instead of imposing their density r=. From Fig. 5
it is seen that for m # 22Ssym the free energy F �
2mr= 2 S�r=� takes its minimum at r= � 0, so all
trimers are on one of the up sublattices. For 22Ssym #

m # 2Ssym the minimum of F is at r= � 1�2, so all sub-
lattices are equally occupied. For m $ 2Ssym the mini-
mum of F is at r= � 1, so the system is again in a frozen
phase.
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