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Anharmonicity-Induced Solitons in One-Dimensional Periodic Lattices
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All bell- and kink-shaped solitons sustained by an infinite periodic atomic chain of arbitrary anhar-
monicity are worked out by solving a second-order, nonlinear differential equation involving advanced
and retarded terms. The asymptotic time decay behaves exponentially or as a power law according
to whether the potential has a harmonic limit or not. Excellent agreement is achieved with Toda’s
model. Illustrative examples are also given for the Fermi-Pasta-Ulam and sine-Gordon potentials.
Lattice and continuum solitons differ markedly from one another.
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The atomic motion in an anharmonic crystal is de-
scribed [1] in terms of generic modes comprising lo-
calized vibrations such as breathers and standing waves,
vibrational traveling waves, and solitons. The interest for
solitons was kindled in the last century by the observation
of nonoscillatory waves moving in a continuum at con-
stant velocity while preserving a time-independent pattern
[2] which is usually either bell or kink shaped. They show
up as integrable solutions of a nonlinear partial differen-
tial equation [3]. Since then solitons have been investi-
gated in a miscellany of frameworks pertaining to field
theory [4] or solid state physics [2,5] such as hydrody-
namics, optical fibers, or Josephson junctions. Recently
solitons have been recognized to be of significance in
atomic lattices too [6], as regards magnetic materials [7],
spin-Peierls, or charge-density wave compounds [5]. The
task of finding solitons in discrete matter is more difficult
[8–10] than in a continuum because a nonlinear differ-
ential equation, including retarded and advanced terms,
must be coped with, which is an unsolved problem so far.
Thus all previous attempts [11] have consisted of moving
breathers or static solitons over the Peierls-Nabarro bar-
rier. As the resulting solutions either got deformed and
damped by radiating phonons or displayed undamped os-
cillations called nanopterons [1,2,11], no conclusive state-
ment could even be made upon the existence of solitons
in anharmonic crystals, except for two particular models,
the moving breather [12] and Toda’s potential [13].

This work is concerned with working out for the first
time all classical solitons of an anharmonic, infinite, and
periodic atomic chain. Solitons are shown to exist in
discrete lattices by taking advantage of the infinite chain
being integrable for solitons, as already done for breathers
[14]. The procedure will be exemplified for bell-shaped
solitons as well as kink-shaped ones in the Toda, Fermi-
Pasta-Ulam (FPU), and sine-Gordon models.

Integrability.—Let us consider an infinite chain of os-
cillators coupled by a pair potential V �

P
i W�ui , ui11�

where ui designates the displacement coordinate of the
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lattice site i. W�ui , ui11� is assumed to be an arbitrary
anharmonic function. The equations of motion read at
time t

üi�t� � 2≠V�≠ui � f�ui21, ui , ui11� . (1)

f�ui21, ui , ui11� is assumed to have one equilibrium
position at ui � 0, ; i for bell-shaped solitons, and two
equilibrium positions at ui � 0 and ui � a, ; i for kink-
shaped solitons, so that f�0, 0, 0� � f�a, a, a� � 0. A
soliton, propagating at constant velocity t21 . 0 while
preserving its shape, is characterized by ui11�t� � ui�t 1

t�, ; i, t (the lattice parameter is thus set equal to 1).
Equation (1) is recast into

ü�t� � f���u�t 2 t�, u�t�, u�t 1 t���� . (2)

Bell- and kink-shaped solitons are characterized, re-
spectively, by u ! 0 for jtj ! ` and both u ! 0 for
t ! 2`, u ! a for t ! `. Besides it is required that
�u�t� vanish a single time at t � 0 for a bell-shaped
soliton, whereas �u�t� keeps always the same sign and
ü�0� � 0 for a kink-shaped soliton, a is realized to stand
for the displacement amplitude of a kink-shaped soliton,
whereas a � u�0� will refer hereafter to that of a bell-
shaped soliton. Thus Eq. (2) turns out to be a nonlin-
ear differential equation having the function u�t� as the
single unknown and including advanced �u�t 1 t�� and
retarded �u�t 2 t�� terms. For conveniency the way to
solve Eq. (2) will be presented for bell-shaped solitons.

As t does not come out explicitly in Eqs. (1) and (2),
a solution u�t� such that u�2t� � u�t�, ; t is looked for.
This requires W�ui , ui11� to be symmetric with respect to
ui , ui11 and thence f�ui21, ui , ui11� to be symmetric with
respect to ui21, ui11. As a matter of fact, after replacing
t by 2t in Eq. (2), it becomes ü�t� � ü�2t�, which is
consistent with u�2t� � u�t�. Thus it suffices to consider
the range t # 0 only. Because of �u�t , 0� fi 0, u�t�
is monotonous versus t. Hence u�t� can be inverted
to give t�u�. This ensures the existence of the one to
one mapping u�t� ! t ! u�t 1 t� for t # 2t, which
© 1999 The American Physical Society
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defines the function g, referred to below as the time-shift
operator, so that u�t 1 t� � g���u�t���� and u�t 2 t� �
g21���u�t����. Because of u ! 0 for t ! 2`, it entails that
g�0� � g21�0� � 0. Equation (2) is then rewritten as

ü�t� � h�u�, h�u� � f���g21�u�, u, g�u���� . (3)

If g�u� is supposed to be known, Eq. (3) shows up an
ordinary differential equation, similar to that encountered
for the continuum soliton [2]. Accordingly, it is integrated
thanks to the kinetic energy theorem, while taking into
account �u � 0 for u � 0, to yield

�u�t� �
q

e���u�t����, e�u� � 2
Z u

0
h�y� dy . (4)

As for continuum solitons, Eq. (4) requires uh�u� . 0
for u ! 0; that is, there is no restoring force in the neigh-
borhood of u � 0. This unstable equilibrium position is
the soliton signature. In case of a harmonic potential this
would cause ju�t�j ! ` for t ! `. Thus an anharmonic
potential is a prerequisite for u�t� to remain finite. A simi-
lar statement has already been made regarding equilibrium
with respect to breathers [14]; that is, anharmonicity can
restore dynamical stability in a lattice unstable in the har-
monic limit.

Equation (4) entails also that the infinite system of
Eq. (1) is integrable in so far as the energy e � � �ui�2�2 2Rui

0 h�y� dy associated with each degree of freedom ui

is conserved (and equal to 0) for every site i. Notice
that this prominent property could be borne out but by
introducing the time-shift operator g�u�. It follows from
Eq. (4) and �u � 0 for u � a that e�u� � 2

Ru
a h�y� dy.

Further integration leads to

t �
Z u

a
dx�

q
e�x� . (5)

Because t�u� is obtained by two quadratures, as would
be the case for a single oscillator, Eq. (2) is said to be
integrable for solitons. Applying Eq. (5) to t gives

t �
Z u�t1t�

u�t�
dx�

q
e�x� . (6)

By differentiating Eq. (6) with respect to u�t�, it becomes

dg�du �
q

�e���g�u�����e�u�� , (7)

where u�t 1 t� � g���u�t����.
Asymptotic behavior.—Taking the leading power of the

Taylor expansion of h�u� in Eq. (3) at the equilibrium
position u � 0 to be proportional to ul gives rise to
dg�du �

p
�g�u��u�l11. Replacing g�u� by rua near

u � 0 leads to a � 1, r � r �l11��2, whence l � 1 or
r �

dg
du �u � 0� � 1 are inferred to be the only possible

assignments. If l � 1 and r fi 1 are assumed [l � 1 and
r � 1 give rise to u�t� � 0, ; t], h�u� shows up a linear
function of u, which entails that the potential W�ui , ui11�
is quadratic with respect to ui , ui11, or equivalently has
a harmonic limit. Therefore two kinds of bell- and kink-
shaped solutions have been found according to whether
the potential W�ui , ui11� has a harmonic limit or not.
They will be denoted A and B and correspond to r fi 1 or
r � 1. They differ markedly by the respective asymptotic
jtj ! ` behaviors of u�t�.

In case of a potential having a harmonic limit �l �
1, r fi 1�, Eq. (2) reads near u � 0 for a soliton A,

ü � gu,

g � r21≠f�≠ui21 1 ≠f�≠ui 1 r≠f�≠ui11 , (8)

where the partial derivatives of f are all calculated
for ui21 � ui � ui11 � 0. In order to get u�t� ! 0
for t ! 2`, g . 0 is needed, whence it ensues that
u ~ et�T and T22 � g. Furthermore, the asymptotic t !
2` exponential behavior entails that r � et�T . Replac-
ing r by this expression in g in Eq. (8) gives rise to what
will be referred to below as the dispersion relation of soli-
tons A by analogy with that of traveling phonons.

Contradistinctly in case of a potential having no har-
monic limit, consistency of Eq. (7) with l . 1 requires
that r � 1. Therefore the associated soliton B displays
an asymptotic behavior for u�t� which is no longer
exponential but rather power-law-like, namely, u�jtj� ~

1�jtj2��l21� for jtj ! `.
All displacement patterns of bell- and kink-shaped

solitons A, B, presented below, have been reckoned by
solving Eq. (2) rather than Eq. (7). They depend on a
single parameter, chosen here to be t. As the shooting
method used for breathers [14] must be discarded because
of the peculiarity of Eq. (2), a scheme combining the
finite element and Newton’s methods has been applied to
the calculation of solitons A and B and will be detailed
elsewhere. It is noteworthy that the time-shift operator
g�u�, by affording explicitly the jtj ! ` behavior of u�t�,
has enabled us to deal with the case of the infinite crystal,
which was beyond the scope of previous work.

Bell-shaped solitons.—The pair potential

W1�ui , ui11� � �ui2ui11�2

2 2
u3

i 1u3
i11

6 1
u4

i 1u4
i11

8 , having
a harmonic limit, has been studied for solitons A. The
dispersion relation reads in this case

2T2�cosh�t�T � 2 1� � 1 , (9)

which implies together with r � et�T . 1 that the ve-
locity t21 . 1. The amplitude a � u�0� versus veloc-
ity t21 is plotted in Fig. 1. No solution was found for
t21 , 1.06. It is interesting to compare with the contin-
uum soliton. The equation of motion is worked out in
this latter case by replacing [2] in Eq. (1) ui11 2 ui by
b≠u�≠x, where b stands for the lattice parameter and x
is the abscissa, and taking the limit for b ! 0. It then
becomes ≠2u�≠t2 2 ≠2u�≠x2 � u2 2 u3. The displace-
ment u�x, t� depends on t and x. Not only does a increase
with t21 for the lattice soliton while a � 4�3 shows up
t independent for the continuum one, but the jtj ! ` be-
havior as u�x, t� ~ �x 2 t�t�22 differs qualitatively from
3983
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FIG. 1. Plots of a�t21� for solitons sustained by the potentials
W1 (filled diamonds), W2 (filled squares), W4 (filled circles),
and W5 (filled triangles).

the exponential one typical of the lattice soliton A, as seen
in Fig. 2.

The potential W2�ui , ui11� � 2
�u,ui11�2

2 1
u5

i 1u5
i11

5 , hav-
ing no harmonic limit, has been investigated for bell-
shaped solitons B [see the displacement patterns u�t� in
Fig. 2]. Accordingly, u�jtj ! `� decays like 1�jtj and
besides does not depend on t. The amplitude has been
plotted versus velocity in Fig. 1. Notice that there are so-
lutions for t21 , 1 by contrast with W1.

Toda’s soliton.—The pair potential [13] reads
W3�ui , ui11� � eui2ui11 and sustains a kink-shaped soli-
ton A having �u�t� , 0, the dispersion relation of which is
given by Eq. (9). The equation of motion reads

ü�t� � eu�t2t�2u�t� 2 eu�t�2u�t1t�. (10)

As a consequence of W3�ui , ui11� depending on ui , ui11
via their difference only, there are infinitely many equilib-
rium positions. Recalling that ü�t � 0� � 0, the solution
is sought to have the property that u�2t� 1 u�t� � 2u�0�,
consistent with Eq. (10). However, W3�ui , ui11� itself has
no particular symmetry with respect to ui , ui11. The se-
quence of iterations of Newton’s method converges still
faster than for the bell-shaped soliton and the agreement
with Toda’s results is gratifying; in particular, the rela-
tion jaj � t�T , valid for Toda’s soliton, is checked accu-
rately. No solitonlike solution having �u�t� . 0 has been
found for Eq. (10). This seems to confirm that the only
soliton sustained by the potential W3 is that discovered
by Toda.
3984
FIG. 2. Plots of u�t� for continuum (solid and dashed lines)
and lattice bell-shaped solitons sustained by W1 (dotted line and
1) and W2 (filled circles and triangles); respective velocities
t21 are indicated in the figure.

FPU soliton.—The FPU potential has been studied
extensively [10]. The version of concern here reads
W4�ui , ui11� � �ui2ui11�2

2 1
�ui2ui11�4

4 . Our interest in the
FPU potential stems from the property that its harmonic
limit has a branch of acoustical phonons unlike most of
the potentials used by other authors [1] which involve a
local contribution ruling out any acoustical phonon. Thus
W4 can describe the bulk atomic motion of a realistic, one-
dimensional anharmonic solid. The dispersion relation
is again given by Eq. (9). As W4�ui , ui11� depends on
ui , ui11 through their difference only like W3, the kink-
shaped soliton A sustained by W4 has the same properties
as already discussed for Toda’s soliton. However, it
displays an additional property because W4�ui , ui11� is
even with respect to ui , ui11; namely, if there is a
solution u�t� there is necessarily a solution 2u�0� 2

u�t�. The amplitude a�t21� is pictured in Fig. 1. It
increases with the velocity but unlike Toda’s soliton
for which a�t21 � 1� � 0, there comes out a�1� fi 0.
Displacement patterns u�t� are represented in Fig. 3.

The potential W5�ui , ui11� �
�ui2ui11�4

4 has been studied
for solitons B. It could mimic a solid driven out of
equilibrium by a soft phonon. Although g�u� is generally
not analytic at u � 0 for every FPU potential having
no harmonic limit, soliton existence has been established
[15]. Besides, the asymptotic decay of u�jtj ! `� can be
shown to be neither exponential nor power-law-like. The
corresponding u�t�’s are pictured in Fig. 3, whereas the
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FIG. 3. Plots of u�t� for lattice solitons sustained by W4 (solid
and dashed lines), W5 (filled triangles and circles) and the
lattice (filled squares and 3) and continuum (filled diamonds
and dotted line) sine-Gordon potentials; respective t21, T’s are
indicated in the figure.

amplitude is plotted in Fig. 1. As is the case for a soliton
B, there are solutions for t21 , 1.

sine-Gordon soliton.—The pair potential has been
taken as W6�ui , ui11� �

�ui2ui11�21cos�ui �1cos�ui11�
2 , because

no soliton has been found for the usual sine-Gordon
potential [2,10,11] written with 2 cos�ui� instead of
1 cos�ui�. Although the configuration ui � 0, ; i of W6
is unstable, dynamical equilibrium could still be achieved
owing to anharmonicity [14]. Since W6�ui , ui11� like
W4, W5 is even with respect to ui , ui11, u�t� and
2u�0� 2 u�t� are simultaneously solutions. But the
term cos�ui� imposes jaj � 2p so that the amplitude is
independent of t. Note that W4, W5, W6 might as well
sustain a bell-shaped soliton since they are symmetric
with respect to ui , ui11. Actually the restoring force
proves too weak to allow for such a solution. The com-
parison with the soliton originating from the sine-Gordon
equation [2] ≠2u�≠t2 2 ≠2u�≠x2 � sin�u� is all the more
interesting since the continuum soliton displays also an
asymptotic exponential behavior and has the same ampli-
tude of 2p. However, the respective dispersion relations
T2 �2 cosh�t�T � 2 1� � 1 for the lattice soliton A and
t22 2 T2 � 1 for the continuum one are quite different.
Accordingly, the respective displacement patterns u�t�
differ from one another as shown in Fig. 3.

In summary, even though the continuum soliton hap-
pens to present an exponential jtj ! ` behavior, the re-
spective properties as regards the dispersion relation or
the a�t21� dependence are quite different. Therefore pre-
vious attempts to obtain the lattice soliton by continuous
extrapolation from the continuum one might be mislead-
ing [2,9–11].

The existence of bell- and kink-shaped solitons moving
at constant velocity while preserving a permanent shape
has been demonstrated in one-dimensional, anharmonic
crystals. This result could be achieved by showing first
that the lattice equation of motion is integrable for soli-
tons. Two classes of solutions, A and B, have been found
depending on the potential having a harmonic limit. In
case the potential has a harmonic limit (soliton A), the
asymptotic behavior is exponential and there is a disper-
sion relation between the decay time T and the propaga-
tion velocity t21. Potentials without any harmonic limit
may sustain solitons B presenting a power-law-like or
even nonanalytic asymptotic decay. An iteration proce-
dure based on Newton’s method has been devised to cal-
culate the soliton displacement patterns u�t�. All features
characterizing u�t� depend on a single parameter only,
e.g., t21. The amplitude a proved in all cases to increase
with t21. Bell-shaped solitons require a bigger restor-
ing force at t � 0 than kink-shaped ones. The time-shift
operator g�u� which proved to play a key role here, has
been introduced owing to u�t� being invertible for soli-
tons. Inversely this approach fails for moving breathers
[12] because u�t� cannot be inverted. This comprehen-
sive access to the lattice soliton properties opens a new
field of investigation for nonlinear phenomena.
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