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Optimized Free-Energy Evaluation Using a Single Reversible-Scaling Simulation
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We present a method, for highly efficient free-energy calculations by means of molecular dynamics
and Monte Carlo simulations, which is an optimized combination of coupling parameter and adiabatic
switching formalisms. This approach involves dynamical reversible scaling of the potential energy
function of a system of interest, and allows accurate determination of its free energy over a wide
temperature interval from a single simulation. The method is demonstrated in two applications:
crystalline Si at zero pressure and a fcc nearest-neighbor antiferromagnetic Ising model.

PACS numbers: 02.70.Lq, 02.70.Ns, 65.50.+m
In the study of thermodynamic properties of materials
[1,2], free-energy calculation is a unique application of
computer simulation techniques. For this purpose, the cou-
pling parameter formalism [2,3] provides a powerful and
robust framework which underlies state-of-the-art tech-
niques such as thermodynamic integration (TI) [2] and adi-
abatic switching (AS) [4–10]. Standard application of this
approach involves the evaluation of reversible work along
a path connecting a physical system of interest to a refer-
ence. Usually, the path is constructed using a composite
Hamiltonian H�l� coupling the two systems through a pa-
rameter l. Upon varying l the coupled system evolves
along a reversible trajectory, changing continuously from
the system of interest to the reference. The reversible work
done by the generalized force ≠H�≠l along this path is
then equal to the free-energy difference between the sys-
tems. While this approach is very powerful, it is not opti-
mal in that only the initial and final points on the trajectory
correspond to physically relevant systems. The informa-
tion gathered at the intermediate states of the path has no
physical meaning, serving only to connect the end points
of the path. As a consequence, one obtains only one value
of the desired free energy per simulation.

In this Letter we describe a formulation which fully uti-
lizes all the information available along a reversible path
and thereby allows the evaluation of free energies over a
wide temperature interval from a single simulation. This
0031-9007�99�83(20)�3973(5)$15.00
approach, which effectively exploits both the coupling pa-
rameter formalism and the adiabatic switching technique,
is based on the use of a specific path which is defined
by the introduction of a scaling factor l in the poten-
tial energy function of the physical system of interest.
The fundamental difference from the usual coupling ap-
proach is that for this particular path all intermediate states
provide physically relevant information. In fact, an ex-
act relation between the partition functions of the original
and the scaled systems shows that all the states along the
scaling path correspond to the original physical system at
different temperatures. The combination of this reversible-
scaling concept with the dynamical variation of l within
the adiabatic switching method results in a highly opti-
mized technique with a significant efficiency gain without
loss of accuracy.

The idea of determining free energies as a function of
a thermodynamic variable from a single simulation is not
new, as several simulation methods designed for this pur-
pose have been developed during the last decade. Im-
portant examples include histogram analysis methods, the
cumulant expansion approach, and the method for direct
evaluation of the density of states. The histogram [11,12]
and cumulant expansion [13,14] methods are based on the
construction of a histogram measuring energy probability
densities from a simulation performed at a single value of
the thermodynamic variable of interest. The results can
© 1999 The American Physical Society 3973
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then be extended to other values by appropriate reweigh-
ing of the original histogram and use of a truncated gen-
eralized cumulant expansion, respectively. Unfortunately,
the range over which the thermodynamic variable can be
covered accurately is limited due to poor sampling of the
high and low energy tails of the original energy histogram
and the truncation of the infinite cumulant expansion. The
direct density of states technique [15] enables the calcu-
lation of free energies as a function of a thermodynamic
variable by analyzing the configurations generated during
a single simulation. While this approach has shown to
be efficient and accurate for discrete systems such as the
Ising spin model, its application to systems characterized
by continuous interactions is far from straightforward.

The reversible-scaling technique presented here pro-
vides a notable alternative to these methods since, aside
from its efficiency, it does not rely on any uncontrollable
approximations and provides accurate results over a wide
temperature range. Moreover, the approach appears to be
applicable to a wide range of physical systems, and its
implementation in a molecular dynamics (MD) or Monte
Carlo (MC) code is straightforward. To demonstrate these
features we calculate the free energy of two systems char-
acterized by rather different interactions: single crystal Si
described by a continuous empirical potential and a fcc
nearest-neighbor antiferromagnetic Ising system.

Let the system of interest, consisting of N particles of
equal mass m, be described by the Hamiltonian

H0 �
NX

i�1

p2
i

2m
1 U0�r1, . . . , rN � , (1)

where ri and pi are the position and momentum vectors
of particle i, and U0 is the potential energy function. It is
assumed that the system is in thermal equilibrium with a
heat bath at temperature T0 and confined to a fixed volume
V . The Helmholtz free energy is given by

F0�T0� � 2 kBT0 ln

∑Z
V

d3Nr exp�2U0�kBT0�
∏

1 3NkBT0 lnL�T0� , (2)

where kB is Boltzmann’s constant and L�T0� is the
thermal de Broglie wavelength �h2�2pmkBT0�1�2.

Now consider the scaled system H1 which is con-
structed from H0 by introducing a scaling factor l . 0
in the potential energy function,

H1�l� �
NX

i�1

p2
i

2m
1 lU0�r1, . . . , rN � . (3)

The corresponding free energy is

F1�T0, l� � 2 kBT0 ln

∑Z
V

d3Nr exp�2U0�kBT �
∏

1 3NkBT0 lnL�T0� , (4)

where T is related to T0 and l as
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T �
T0

l
. (5)

Considering Eqs. (2), (4), and (5) it follows that the
temperature dependence of F0�T � is directly related to the
l dependence of F1�l, T0� at fixed temperature T0,

F0�T �
T

�
F1�T0, l�

T0
1

3
2

NkB ln
T0

T
. (6)

Thus, the problem of calculating F0�T � for system H0
is completely equivalent to the problem of evaluating
F1�T0, l� as a function of l for the scaled system H1�l�.

Problems of the latter type can be addressed very ef-
ficiently and accurately using the AS technique [4–10].
In principle, this method allows the determination of the
free-energy dependence on an external parameter in a
Hamiltonian of interest from a single MD or MC simu-
lation, without relying on any uncontrollable approxima-
tions. Since the calculation of F0�T � of physical system
H0 can be formulated in such terms through (6), it is pos-
sible to obtain F0�T � indirectly through the determination
of F1�T0, l� by an AS simulation of the scaled system
H1�l�. This approach fully benefits from the efficiency
and accuracy of AS and, as will be demonstrated in the
applications, provides a very powerful tool for the calcu-
lation of free energies as a function of temperature.

Our approach is to calculate F1�T0, l� by exploiting
the AS technique for estimating the reversible work as-
sociated with processes in which l is varied adiabatically
at a fixed temperature. Such processes are simulated by
means of a MD or MC run of system H1�l� at tem-
perature T0 where the parameter l � l�t� is a function
of time t (or MC step) that varies continuously between
l�0� and l�ts�. Here, the switching time ts represents
the total length of the AS process, measured in time (or
MC) steps. If the simulated process is ideally adiabatic,
the cumulative free-energy difference DF1���l�t�, l�0���� �
F1���T0, l�t���� 2 F1���T0, l�0���� is equal to the cumulative re-
versible work W�t� done by the generalized force ≠H1�≠l

associated with l,

DF1���l�t�, l�0���� �
Z t

0
dt0

dl

dt

Ç
t0

U0���r1�t0�, . . . , rN �t0����

� W�t� . (7)

Using (5) and (6), the time dependence of W�t� can be
linked to the temperature dependence of the free energy
in H0,

F0���T �t����
T �t�

�
F0���T �0����

T �0�
1

W�t�
T0

2
3
2

NkB ln
T �t�
T �0�

, (8)

where T �t� � T0�l�t� and T �0� � T0�l�0�. This result,
which defines the approach that we call reversible scaling
(RS), shows that each instant t along the AS simulation of
system H1�l� corresponds to the physical system H0 at a
unique temperature T � T0�l�t�. Thus, according to (8),
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the evaluation of the cumulative work function W�t� along
a single AS simulation of H1�l� at constant temperature
T0 is sufficient to obtain the absolute free energy F0�T �
on the temperature interval specified by the boundaries
T �0� � T0�l�0� and T �ts� � T0�l�ts�, provided that F0
is known at one of these boundaries and the process is
ideally reversible.

The requirement of knowing F0 at one of the bound-
aries of the temperature interval is not a serious limitation
since it is always possible to choose a suitable reference
temperature for which the free energy can be evaluated us-
ing standard techniques. The second condition, however,
might impose a more serious restriction on the practical
applicability of RS since its satisfaction requires infinitely
long switching times ts. Obviously, this requirement can-
not be strictly fulfilled in practical simulations where finite
switching times are inevitable. The consequence of this
is the introduction of irreversible energy dissipation along
the process, in violation of Eq. (7). The work W�t� is
therefore not exactly equal to the free-energy difference,
but only an upper limit estimate [7,9,10] which converges
to the “exact” free-energy difference in the limit of using
very long ts. It has been shown, however, that in practice
satisfactory convergence can be achieved using relatively
short switching times [4–7,10]. Moreover, any small sys-
tematic errors caused by finite switching times can be esti-
mated using a simple hysteresis analysis procedure [7,10].

It should also be noted here that the application of RS
is not limited to the canonical ensemble discussed above.
The methodology can be extended to other statistical
ensembles such as the isobaric-isothermal ensemble by
introducing appropriate modifications. Furthermore, we
observe that the RS approach presented here is concep-
tually equivalent to the common procedure of integrating
the appropriate free-energy derivative with respect to tem-
perature [2]. The current approach is different, however,
in that it is based on the coupling parameter formalism,
which allows the determination of the free energy as a
function of temperature from a single constant tempera-
ture AS simulation. In contrast, the common temperature
integration procedure requires a number of independent
simulations at different temperatures.

To illustrate the capabilities of RS we calculated the zero
pressure Gibbs free energy of a single crystal of Si using
MD simulations on a periodic cell of 512 atoms. U0 was
taken to be the environment-dependent interatomic poten-
tial (EDIP) model for Si [16], and the equations of mo-
tion of the isobaric-isothermal ensemble [17] utilized in
the simulations were integrated using a time step of 0.2 fs.
Both the simulation temperature T0 and the reference tem-
perature T �0� were chosen at 200 K. The corresponding
reference free energy was calculated using the quasihar-
monic approximation [18]. The scaling factor l�t� in
H1�l� was set according to a linear interpolation between
the initial and final values of l, spanning the temperature
interval between 200 and 1000 K in a switching time ts.
Figure 1 shows the results of three different RS-
MD simulations, characterized by switching times ts

of 0.1 ps, 1.0 ps, and 5.0 ps, respectively. Each curve
shows the Gibbs free energy per atom, measured at a
dense temperature grid along the corresponding RS-MD
simulation. The circles correspond to a set of reference
data obtained using an independent AS method in which
interacting Si atoms are transformed into independent
Einstein oscillators at selected temperatures [7].

These results clearly show the accuracy and efficiency
of RS-MD. While the difference between the results
obtained for ts � 0.1 ps and the reference data is still
relatively large for higher temperatures, the agreement is
already within 0.1% over the whole temperature range
for ts � 1.0 ps and it is even better for ts � 5.0 ps,
where the RS-MD results are essentially identical to the
reference data. It is important to point out here that
the ts � 5.0 ps simulation required only 2.5 3 104 MD
steps for the evaluation of the whole free-energy curve,
which required about 25 min of CPU time on a single SGI
R10000 processor. In comparison, the data obtained with
the reference method required of the order of 105 MD
steps for each data point, so that the total computational
cost associated with the entire reference data set was about
a factor 36 higher than for the 5.0 ps RS-MD simulation.

As a second application we evaluate the configurational
free energy as a function of temperature of a fcc nearest-
neighbor antiferromagnetic Ising spin model at zero
magnetic field [19]. This calculation is more challenging
since the system shows a first order phase transformation
in the temperature interval of interest, giving rise to

FIG. 1. Convergence of the RS-MD method for EDIP Si at
zero pressure as a function of the switching time ts, Gibbs free
energy per atom obtained using three trajectories with switching
times of 0.1, 1.0, and 5.0 ps, respectively. Circles represent
reference data obtained using the independent reference AS
method.
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irreversible hysteresis effects. The system was simulated
with a single flip Metropolis MC algorithm [20] using
a computational cell containing 1728 spins subject to
periodic boundary conditions. The RS-MC simulation
was carried out at a (reduced) simulation temperature
T0 � T �0� � 1. The reference temperature was chosen
at T �ts� � ` for which the free energy per spin is known
exactly: F0���T �ts�����T �ts� � 2kB ln2. Similar to the RS-
MD simulation of Si, the scaling factor l�t� was set
according to a linear interpolation between the initial
and final values of l, spanning the temperature interval
between T � 1 and T � ` in ts RS-MC steps. Since
only configurational contributions are of interest here,
the kinetic contributions appearing in the form of the
logarithmic terms in (6) and (8) were omitted.

Figure 2 shows the results of three different RS-MC
simulations, characterized by switching times ts of 1 3

103, 1 3 104, and 2 3 105 MCS, respectively. Each
curve shows the configurational free energy per spin (in
units of the nearest-neighbor interaction J) as a function
of temperature, measured at a dense temperature grid
along the corresponding RS-MC simulation. The circles
with the error bars represent reference data obtained by
standard thermodynamic integration of internal energies
over the inverse temperature domain [19].

Despite the irreversible hysteresis effects caused by
the first order phase transformation near T � 1.77, RS-
MC performs very well. For T . 1.8 the agreement is
excellent for all three curves, while for lower temperatures
the convergence is somewhat slower due to the occurrence

FIG. 2. Convergence of the RS-MC method for the fcc
nearest-neighbor antiferromagnetic Ising spin model at zero
field as a function of ts, configurational free energy per spin (in
units of the nearest-neighbor interaction J) obtained using three
runs with 1 3 103, 1 3 104, and 2 3 105 MCS, respectively.
Circles with error bars represent a set of reference data obtained
using standard thermodynamic integration over the inverse
temperature domain of the internal energy.
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of the phase transition during the switching process. How-
ever, “slower” is only a relative notion given that the
lower temperature agreement between RS-MC and the
reference data is already within 0.5% for ts � 2 3 105

MCS (about 30 min of CPU time). This is quite remark-
able given the fact that the reference data were obtained
from a set of 34 independent constant temperature simu-
lations of 1 3 106 MCS per temperature. Accordingly,
the total computational cost associated with this reference
data set was about a factor 170 higher compared to the
2 3 105 MCS RS-MC simulation.

In both examples RS has shown to be substantially
more efficient than the standard AS and TI approaches.
In typical applications, the computational cost associated
with RS should be of the order of a single simulation
instead of a set of N runs utilized in standard AS and
TI schemes, resulting in an efficiency gain that scales
as N . We acknowledge that further exploration of the
applicability of RS to physical systems more complex
than the examples studied here would be worthwhile.
We also note that the method, in particular, should be
useful for free-energy calculations using computationally
demanding modeling approaches such as tight-binding
and first-principles molecular dynamics.

In conclusion, we have developed an effective method
for calculating free energies as a function of temperature
from a single MD or MC simulation. The essence of our
approach lies in the simulation of a reversible-scaling path
defined by the introduction of a scaling factor in the po-
tential energy function of the physical system of interest.
As demonstrated by the two different applications, the re-
sulting method is accurate and very efficient. It appears
that the method is generally applicable to a wide range of
physical systems.
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