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The electrophysiology of cardiac tissue is altered during acute myocardial ischemia, making the
tissue less excitable but, nonetheless, more susceptible to tachyarrythmias which frequently degenerate
to fibrillation within several seconds. The transition from tachycardia to fibrillation is associated with
the breakup of spiral waves into multiple offspring, and has been linked to steep restitution �slope . 1�
of action potential duration (APD). However, restitution curves become so flat during ischemia that this
mechanism does not apply. We found that when the response of APD to recent activations is included
in a model of excitable media, spiral breakup can occur even when the slope in APD restitutions is ,1.

PACS numbers: 87.19.Hh
Spiral waves of electrical activity occurring in cardiac
tissue are life threatening because they act as high fre-
quency sources of waves which take control over the
heart’s natural pacemaker and induce tachycardia. Once
initiated in the ventricles, tachycardia (VT) usually de-
cays within a few seconds into ventricular fibrillation (VF)
[1], a more spatiotemporally disorganized electrical activ-
ity leading to sudden cardiac death. Experiments in the
heart using simultaneous multi-site electrode mappings
have shown that in many cases VF is a consequence of
several wandering spiral waves [1,2]. It has also been
suggested that the rapid transition from VT to VF can be
associated with the breakup of a spiral wave into mul-
tiple offspring [3,4]. Over the last decade spiral wave
breakup has been studied using models of excitable me-
dia ranging from simple generic [5–7] to detailed ionic
models with explicit membrane processes which accu-
rately reproduce the cardiac action potential at the single
cell level [8–10]. The dynamics and stability of spiral
waves obtained with these models can be analyzed in
terms of two mesoscopic functions; the restitution of ac-
tion potential duration (APD) and restitution of conduc-
tion velocity (CV) [11,12]. These functions describe how
the duration and conduction velocity of a wave depend
on the time interval since the previous activation, during
which the medium recovers its resting properties. These
restitution functions thus reflect the electrophysiological
state as well as tissue characteristics. Numerical simula-
tions with different models have shown that steep APD
restitution curves �slope . 1� can cause slow recovery
fronts [3] and APD alternation [4]. Both mechanisms are
proarrhythmic, leading to breakup and disorganized elec-
trical activity. Nevertheless, most experimental studies in
normal tissue have reported APD restitution curves with
slope , 1 [13,14]. Therefore it remains unclear whether
steep restitutions occur only in diseased tissue [15], dif-
ferent protocols are needed to measure APD restitutions
[16], and/or other mechanisms are responsible for spi-
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ral wave breakup [12,17]. Furthermore, previous stud-
ies have shown that APD restitutions depend not only on
the last activation, but in fact upon previous basic cycle
lengths (BCLs) [13,16,18–21].

In this Letter, we incorporate in a phenomenological
way the effect of BCL history (“memory”) into a model
for cardiac action potential. This yields APD restitution
curves which also depend upon previous BCLs, and
provide a new mechanism for spiral wave breakup in the
low-excitability limit.

The adaptation of APD to changes in cycle length
can be attributed to [18]: (i) nonequilibrium values of
the ionic currents (incomplete membrane recovery) and
(ii) changes in electrochemical gradients and permeabil-
ity due to differences in accumulation of intracellular
calcium and extracellular potassium at different rates of
stimulation. Even though the precise cellular mechanism
involving electrical memory is not known in many in-
stances the APD restitution for a given BCL can be fitted
by the sum of two exponentials [13,15,18]. Furthermore,
Elharrar and Surawicz [13] showed that the two exponen-
tial components are almost independent of BCL and thus

APDt � APDmaxg�BCL�

3 �1 2 A1 exp�2DIt�T1� 2 A2 exp�2DIt�T2�� .

(1)

Here DIt is the preceding diastolic interval (the previ-
ous cycle length is denoted by APDt21), Ti and Ai are
fitted constants from experimental APD curves [13], and
g�BCL� represents the memory (g � 1 at large BCL and
decreases with decreasing BCL). An explicit formula for
g�BCL� can be obtained [13] and used to calculate theo-
retical APD restitutions at different BCLs (Fig. 1). Note
that as the BCL decreases the maximum APD also de-
creases, flattening the APD restitution curve.

In order to reproduce these APD restitutions in numeri-
cal simulations from an ionic model, memory must be
© 1999 The American Physical Society
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FIG. 1. APD restitutions at five different BCLs. The model
equations are integrated using a second order implicit scheme
described in Ref. [12]. The minimum diastolic interval was
chosen to fit the Luo-Rudy-I CV restitution (see text).

incorporated. The first complex mathematical models used
to describe the APD in cardiac tissue [8,9] lacked exchange
currents and ignored several time dependent ionic concen-
trations. As a result they generate APD restitution curves
which depend only on the last DI and not on previous cycle
lengths. “Second generation” complex ionic models [10]
are more robust since they include dynamic ionic concen-
trations, pump exchangers, and more ionic currents. How-
ever, they are not only too slow to simulate in more than
one dimension, but also some of their ionic fluxes seem
to display unrealistic saturations when periodically stimu-
lated at high frequencies for prolonged times [22].

Therefore we chose to incorporate memory into a
simplified ionic model [12], which can trace arbitrary
monophasic restitution curves and can reproduce the dy-
namics of more complex models when fitted to their
respective restitution curves. The model consists of
three independent currents: Iion � Ifi 1 Iso 1 Isi. Here
Ifi�u; y� � 2y�u 2 0.13� �1 2 u�p�td . Ifi controls the
CV restitution and represents the fast inward current
(Na), it is a function of u (the membrane voltage which
propagates according to the cable equation [3,4,11]) and
a fast gate y given by ≠ty � �1 2 p� �1 2 y���t2

y1�1 2

q�t2
y2q� 2 py�t1

y . The APD restitution is controlled
by a slow outward current (K) Iso�u� � u�1 2 p��t0 1

p�tr and a slow inward current (Ca) Isi�u; w� � 2w�1 1

tanh�10�u 2 0.85����2tsi with a slow gate w defined by
≠tw � �1 2 p� �1 2 w��t2

w 2 pw�t1
w . The time con-

stants and the Heaviside functions p and q are further
described in [12]. Figure 1 shows how this model repro-
duces the APD restitution curve at different BCLs after
choosing appropriate time constants (Table I). Memory
is included as follows. First, convert the time constants
responsible for the APD restitution into functions of the
cycle length �bcl�, which becomes a variable in the
model. A least squares method is used to fit the values
TABLE I. Values for the ionic time constants used to obtain
the different BCL’s. The first part of the table corresponds
to “normal” tissue (Fig. 1) and the second part to “ischemic”
tissue (Fig. 3).

BCL100 BCL300 BCL500 BCL1000 BCL1500

t1
w 500 720 900 1110 1200

t2
w 50 59 60 64 70

tsi 20.7 37 55 76.3 90.5
tr 24 42 62 85 100

tr 112 164 203 257 275
td 0.35 0.32 0.29 0.23 0.17

in Table I. In order to obtain monotonic functions of bcl
over the range 0–1500 ms, cubic polynomials were used
to represent tsi and tr and fourth order polynomials were
used to represent t1

w and t2
w . Next, add an extra variable

T that tracks the time of the last activation and is used to
update bcl in response to sudden changes in cycle length.

The response of APD adaptation to abrupt changes in
BCL depends upon the direction of the change. After
the BCL is abruptly shortened in healthy tissue, APD
decreases rapidly at first, and later decreases more slowly
reaching a new steady state after many beats [13,21].
On the other hand, after an increase in BCL, the APD
adapts more smoothly and takes several beats longer to
reach its new larger steady state value [13,21]. Hysteresis
in adaptation to BCL and the dynamical link between
APD restitutions at different BCLs is modeled to first
approximation with a simple piecewise linear equation
which updates the bcl.

bcl �

Ω
a1bcl 1 �1 2 a1�T if bcl # T ,
a2bcl 1 �1 1 a2�T otherwise. (2)

The CV restitution curve has not been studied as
broadly as its APD counterpart. We therefore chose to fit
the CV curve to one obtained from the “first generation”
model which has the most accurate Na current, i.e.,
the Luo-Rudy-I (LR-I) model [9,12] (t2

y1 � t
2
y2 � 18.18,

t1
y � 10, t0 � 12.5, and td � 0.172). Furthermore,

we left the CV independent of BCL since experiments
have shown that in normal tissue, cycle length does not
significantly affect maximum longitudinal or transverse
velocity [23].

Using polynomial representations of the time constants
in Table I, a LR-I CV restitution, and an initial BCL
1500 ms, a spiral wave was initiated by a broken plane
wave [3,12] (equivalent to induction by a cross-field
stimulation in real tissue). The spiral wave tip initially
followed a linear core trajectory of about 2 cm with a
period of �150 ms. As the spiral turned, both the cycle
length and the rotational period decreased as expected
[21], resulting in a shorter period of �60 ms with a
linear core of �5.5 mm. The final period of rotation was
shorter than that observed experimentally. This follows
from the small minimum diastolic interval given by the
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LR-I C restitution curve and the relatively short APDmax

obtained from Eq. (1) at BCL smaller than 200 ms.
We checked numerically that increasing either of these
increases the rotational period. During dynamical BCL
adaptation produced by the spiral wave while rotating,
oscillations of APD where observed and even transient
breakup [Figs. 4(a)–4(c)]. New spiral waves are not
formed because the APD remains large at this stage
causing the broken ends to recombine, much in the same
way as an obstacle too small compared to the wavelength
is unable to induce breakup [24].

When the cardiac tissue suddenly lacks enough oxygen
it becomes ischemic, arrhythmias are generated almost
immediately and frequently culminate in VF [25,26].
We therefore proceeded to investigate if the ischemic
electrophysiology could increase the amplitude in APD
oscillations during spiral cycle length adaptation and be a
cause of spiral wave breakup at this regime.

During ischemia the electrophysiology of the cardiac
tissue is altered in several ways: (i) APDmax decreases
and the restitution of action potential becomes flatter [25];
(ii) due to a decrease in resting membrane potential,
the maximum upstroke velocity of action potential de-
creases, lowering the maximum CV [21]; (iii) cellular cou-
pling, and thus upstroke velocity, becomes dependent upon
cycle length, making CV a function of BCL [20] unlike
the case of normal tissue; (iv) APD adaptation to a sud-
den decrease in BCL becomes smooth and seems almost
linear [19].

One reason for flattening of APD restitution is the
smaller contribution from the calcium currents [25]. Is-
chemia can then be included by eliminating Isi, which
flattens the APD restitution curves [12,27], and makes
them depend only on tr . A decrease in CVmax can be
achieved by increasing t1

y (we use t1
y � 3.5). The sub-

sequent changes in CV restitution as a function of BCL
arise from making the sodium conduction �td� a function
of BCL and setting t

2
y2 � 88. Finally, the slower adap-

tation to BCL changes is achieved by increasing a1 in
Eq. (2) (Fig. 2). Figure 3 shows the flat APD restitution
obtained with the constants of Table I.

FIG. 2. Adaptation to sudden changes in BCL. The BCL
was changed from 1000 to 500 to 1000 to 1500 and back to
1000 ms. Bullets correspond to “normal tissue” �a1 � 0.4� and
open circles to “ischemic” �a1 � 0.7�. In both cases a2 � 0.8.
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When a spiral wave is initiated using the ischemic
parameters, it follows a similar period shortening as in
“normal” tissue. Breakup due to slow recovery fronts is
also observed during the first rotations, even though the
slope in the APD restitutions is less than 1. However,
as in the normal case, the APD is too large and the
breakup is transient. Nevertheless, after approximately 18
rotations the BCL has become so short that excitability is
significantly reduced, causing spiral breakup.

More precisely, as the cycle length shortens, the spiral
wave gets close to a regime of very low excitability in
which the radius of rotation diverges and spiral tips retract
[6,7], with speed increasing as excitability decreases [7].
When the spiral wave tip meanders, it can quickly turn in
a small region of extremely weak excitability resulting in
a fast wave contraction. Such rapid contraction can leave
behind a small “voltage droplet” as shown in Figs. 4(d)–
4(f). This is probably a generic phenomena in media
with very low excitability [28]. However, in our case,
because of the dynamic cycle adaptation, the droplet
can find excitable regions and propagate [Figs. 4(g)–
4(i)] producing multiple waves. The result is identical
in effect to a premature stimulus following in the wake
of a wave. We note that the time it takes for a spiral
to reach breakup in this mechanism ��4 s� agrees with
the lifetime of Wiggers stage I [1] before VF goes into
full disorganization (Wiggers stage II). This breakup
mechanism may be amplified when one considers the
enhancement in dispersion of repolarization occurring
during ischemia.

In summary, our results show that spiral wave breakup
can be induced even with flat APD restitutions, as long
as the dynamic effects of tissue memory and sufficiently
large changes in BCL are considered. Note that “slope ,

1” criteria for stability reflect only the effect of small
perturbations from equilibria, and BCL starts far from an
attractor and appears to fluctuate chaotically during the
approach as well as on the attractor.

In addition, it will be desirable to check the valid-
ity of Eq. (1) at low BCLs and to measure experi-
mental CV and APD restitutions at different BCLs in

FIG. 3. Simulated APD restitution curves at different BCLs
during ischemia. The constant APD was chosen by taking
the average of APDmax and APDmin from the “normal” case
(Fig. 1). This approach seems to agree with experimental APD
restitutions [25]. The small slopes [27] are ,0.65.
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FIG. 4. Normal tissue (the large size of 17 3 17 cm was
chosen to model BCL adaptation), (A) spiral wave after first
rotation �t � 200 ms�, (B) unsuccessful breakup �t � 1.1 s�,
(C) final stable spiral �t � 3 s�. Ischemic tissue (size 8.5 3
8.5 cm), (D)–(I) generation of a “voltage droplet” resulting in
multiple waves (t � 4.08, 4.09, 4.1, 4.11, 4.13, 4.5 s).

ischemic tissue so they can be included in the model.
Equation (2) might be expanded by including a longer
history of previous activations in order to better describe
adaptation to changes in cycle length as well as to
reproduce observed small oscillations in APD [13,21]
which may have important effects.
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