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Charge Order, Superconductivity, and a Global Phase Diagram of Doped Antiferromagnets
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We investigate the interplay between lattice symmetry breaking and superconducting order in a two-
dimensional model of doped antiferromagnets, with long-range Coulomb interactions and Sp�2N� spin
symmetry, in the large-N limit. Our results motivate the outline of a global phase diagram for the
cuprate superconductors. We describe the quantum transitions between the phases, the evolution of
their fermion excitation spectrum, and the experimental implications.
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A number of recent experiments have found a r
variety of phases in the cuprate superconductors [1–
The various ground states can be distinguished by
manner in which they preserve, or spontaneously bre
three distinct and familiar symmetries of the Hamiltonia
(a) the electromagnetic U�1� symmetry,S , which is bro-
ken in thed-wave superconducting phase, but is preser
in an insulating ground state; (b) the SU�2� spin rotation
symmetry,M , which is broken in magnetically ordere
phases; and (c) the symmetry of square lattice translat
and rotations,C , which we will consider broken if an ob
servable invariant underS andM , like the charge den-
sity, is not identical on every site and every bond. W
shall take the point of view here that all the phases
conventionally characterized by the manner in whichS ,
C , andM are broken, and have no “exotic” propertie
or excitations, i.e., in principle, an appropriate electr
Hartree-Fock�RPA�BCS theory, with perturbative correc
tions, can be found; the anomalous finite temperatureT )
properties are then believed to be signatures of quant
critical points separating these phases [4–7].

This paper will describe theT � 0, global phase dia-
gram of two-dimensional, doped antiferromagnets by d
cussing the competition between phases in which one
more of theS , C , andM symmetries may be broken
Among our results will be the complete quantitative so
tion of a microscopic model of a doped antiferromagnet
the case where theM symmetry is generalized [8] from
SU�2� to Sp�2N� [note SU�2� � Sp�2�] and the large-N
limit is taken under a particular representation of Sp�2N�.
The simplifying feature of this limit is that it restricts a
tention to the portion of the phase diagram (see Fig. 1
low) where theM symmetry remains unbroken; howeve
it does allow a realistic description of the subtle and co
plicated interplay between theC andS symmetries. Our
results include (i) computation of the doping depende
of the charge-ordering configuration and the evolution
the ordering wave vector, (ii) computation of the sing
particle fermion spectrum, measurable in photoemiss
experiments, in phases withC andS broken, and (iii) pro-
posal of a quantum-critical field-theoretic model to expla
the recently observed [10] anomalousT and frequency de-
pendence of the photoemission linewidth.
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We will consider the following extended “t-J” Hamil-
tonian for fermions,cia , on the sites,i, of a square lattice
with spina � 1 · · · 2N (N � 1 is the physical value):

H �
X
i.j

"
2

tij

N
c
y
iacja 1 H.c. 1

Vij

N
ninj

1
Jij

N

√
Si ? Sj 2

ninj

4N

!#
. (1)

Here ni � c
y
iacia is the on-site charge density, and t

spin operatorsSi are fermion bilinears times the trac
less generators of Sp�2N�. We will be primarily con-
cerned with the case where the fermion hopping,tij,
and exchange,Jij , act only wheni, j are nearest neigh
bors, in which casetij � t and Jij � J; however, we
will occasionally refer to cases with second neighbor h
ping (t0) or exchange (J 0). The Coulomb interaction be
tween the electrons is represented by the on-site const
ni # N , and the off-site repulsive interactionsVij which
fall off as the inverse separation between the sites.
Vij are included to counteract the phase separation
dency of thet-J model [11–13], and they play a ke
role in our analysis. We shall be interested in desc
ing the ground state ofH as a function of its couplings
and the average doping concentration,d, which is fixed
by �1�Ns�

P
i�ni� � N�1 2 d�, whereNs is the (infinite)

number of sites.
The proposed phase diagram ofH is shown in Fig. 1.
First, consider the vertical line,d � 0. Below X,

magnetic Néel order is present and soM is broken;
however, the charge densities are identical on every b
and site, and soC is preserved, as isS because the groun
state is an insulator. AboveX, there is a transition to a
quantum paramagnet andM symmetry is restored; thi
transition was studied in Refs. [8,14], and it was argu
thatC was necessarily broken in the quantum paramag
leading to spin-Peierls order. We can also view the sp
Peierls order as abond-centered charge-density wave with
a2 3 1 unit cell [15]. Recent work [16] has shown stron
evidence for this order in theN � 1 model withJ 0 . 0.

We now describe the evolution of the ground st
with increasingd along A1. The large-N limit is taken,
as described earlier [12], by minimizing the saddle-po
© 1999 The American Physical Society
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FIG. 1. Schematic, proposed, ground state phase diagram of
H as a function of the doping d for physically reasonable
values of t, J, and V . The vertical axis represents a parameter
which measures the strength of quantum spin fluctuations— it
increases linearly with N but can also be tuned continuously by
J 0�J. The magnetic M symmetry is broken in the hatched
region, while C symmetry is broken (with accompanying
charge-density modulation) in the shaded region; there are
numerous additional phase transitions at which the detailed
nature of the M or C symmetry breaking changes— these are
not shown. For d � 0, M symmetry is broken only below
the critical point X, while C symmetry is broken only above
X. The superconducting S symmetry is broken for all d . 0
at large N ; for smaller N , the S can be restored at small
d by additional C breaking along the vertical axis for the
states in the inset— this is not shown. The superconductivity
is pure d wave only in the large d region where C and
M are not broken. The arrow A1 represents the path along
which quantitative results are obtained in this paper, while
A2 is the experimental path. The nature of the C symmetry
breaking along path A1 is also sketched: the thick and dashed
lines indicate varying values of jQijj (proportional to the bond
charge density) on the links, while the circles represent b2

i
(proportional to the site hole density). The charge densities
on the links and sites not shown take values consistent with the
symmetries of the figures shown. We expect that the nature of
the C symmetry breaking will not change significantly as we
move from A1 to A2, and across the phase boundary where M
is broken: this suggests the appearance of collinearly polarized
spin-density waves, which break both C and M , and which
undergo an “antiphase” shift across the hole-rich stripes [9].

free energy with respect to the site charge density N�1 2

b2
i � � �ni� and the complex bond pairing amplitude

NQij � �J abc
y
iac

y
jb���bibj� [where b2

i is the hole den-
sity at site i and J denotes the Sp�2N�-invariant antisym-
metric tensor], while maintaining certain local and global
constraints. There have been a number of related earlier
mean-field studies [17], but they have all (with the ex-
ception of Ref. [12]) restricted attention to the case where
bi and jQijj are spatially uniform (note that jQijj has the
same symmetry signature as the bond charge density and
is therefore a measure of its value). However, such solu-
tions are usually unstable, and at best metastable, at low
doping; here we have attempted to find the true global
minima of the saddle-point equations, while allowing for
arbitrary spatial dependence: such a procedure leads to
considerable physical insight and also leads to solutions
in accord with recent experimental observations.

First, at d � 0 along A1 we find the fully dimerized, in-
sulating spin-Peierls (or 2 3 1 bond charge-density wave)
solution [18] in which jQijj is nonzero only on the bonds
shown in Fig. 1. Moving to small nonzero d along A1, our
numerical search always yielded lowest energy states with
C broken, consisting of bond-centered charge-density
waves [19] with a p 3 1 unit cell, as shown in Fig. 1.
We always found p to be an even integer, reflecting the
dimerization tendency of the d � 0 solution. Within each
p 3 1 unit cell, we find that the holes are concentrated on
a q 3 1 region, with a total linear hole density of r�. A
key property is that q and r� remain finite, while p ! `,
as d ! 0. Indeed, the values of q and r� are deter-
mined primarily by t, J, and the nearest-neighbor value of
Vij � Vnn, and are insensitive to d and longer range parts
of Vij . For d ! 0, we found that q � 2 was optimum for
a wide range of parameter values, while larger values of q
(q $ 4) appear for smaller values of Vnn; specifically we
had q � 2, r� � 0.42 at t�J � 1.25, Vnn�t � 0.6, and
q � 4, r� � 0.8 at t�J � 1.25, Vnn�t � 0.5. The limit
Vnn ! 0 leads to q ! ` which reflects the tendency to
phase separation in the “bare” t-J model. The evolution
of p with d is shown in Fig. 2.

Note that there is a large plateau at p � 4 around
doping d � 1�8, and, for some parameter regimes, this
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FIG. 2. The charge-ordering wave vector K (in reciprocal
lattice units) as a function of d at N � ` for t�J � 1.25,
Vnn�t � 0.6 (where q � 2). For the states in Fig. 1, K �
1�p. We have K � 1�2 at d � 0. The K � 1 value at large d
has C symmetry restored and is a pure d-wave superconductor.
For other values of parameters, the K � 1�2 plateau does not
occur, and there is a direct jump from K � 1 to K � 1�4 (or
smaller) (see Fig. 3).
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is the last state before C is restored at large d; indeed
p � 4 is the smallest value of p for which our mean-
field theory has solutions with bi not spatially uniform.
Experimentally [1,2], a pinning of the charge order at
a wave vector K � 1�4 is observed, and we consider
it significant that this value emerges naturally from our
theory.

Our large-N theory only found states in which the
ordering wave vector K was quantized at the rational
plateaus in Fig. 2. However, for smaller N we expect
that irrational, incommensurate, values of K will appear
and interpolate smoothly between the plateau regions.

In our large-N theory, each q-width stripe above is
a one-dimensional superconductor, while the intervening
�q 2 p�-width regions are insulating. However, fluctua-
tion corrections will couple with superconducting re-
gions, yielding an effective theory discussed in Sec. VII
of Ref. [20] with their dimensionless parameter K � N .
This implies that Josephson pair tunneling between the
one-dimensional superconductors is a relevant perturba-
tion at sufficiently large N , leading to two-dimensional
superconductivity. However, the bare pair-tunneling am-
plitude is exponentially small in p, while the Coulomb
interaction between the hole-rich regions falls off only as
1�p; the latter can then dominate for smaller N and d,
leading to further C breaking along the vertical stripe di-
rections, and a transition to a two-dimensional insulating
state with S restored and an even number of electrons per
unit cell. Such an insulating state is more likely at ratio-
nal d, when the charge-ordering period along the vertical
stripe direction is commensurate with the lattice.

We show a fixed d � 1�8, large N , cross section of
our results in Fig. 3. The transition from a d-wave super-
conductor, with C unbroken, to the fully formed p 3 1
stripes discussed above can be either first order or via in-
termediate states with partial stripe order. In the latter
case, there is first a continuous transition to a state with
C symmetry breaking at p � 2; every site is equivalent
in such a state, and so the site charge density is uniform
while there is a modulation in the bond charge density;
this state can also be viewed as possessing coexisting su-
perconducting and spin-Peierls order [12]. To our knowl-
edge a p � 2 charge-ordered superconducting state has
not been experimentally detected, but a search for one
should be worthwhile. There is a second second-order
transition to the p � 4 state with partial stripe order, be-
fore the fully formed p � 4, q � 2 state with intervening
insulating stripes appears (Fig. 3). Larger values of V sup-
press phases with a nonuniform distribution of site charge
densities; such phases also disappear in the limits of small
t�J, and t�J ! `.

We now discuss the fermion excitation spectrum in
the states found above. The d-wave superconductor of
course has gapless, linearly dispersing fermion excitations
along the �1, 61� directions in the Brillouin zone. The
various charge-ordered phases in general show a gapped
3918
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FIG. 3. Ground states of H at d � 1�8 and N � `. Full
(dashed) lines indicate first(second)-order transitions. All states
have superconducting order, but the superconductivity is one
dimensional (only at N � `) in the phases with full stripe order
(shaded).

spectrum; see Fig. 4. In the fully striped phases the
fermion energy is independent of kx (the momentum
perpendicular to the stripes), and the dispersion minimum
is near �0, 61�4�. In the p � 2 phases (and also for p �
4 and partial stripe order) the minimum of the energy is
at complex values of pairing amplitudes Qij ; these states
break time-reversal symmetry T and their fermionic
excitations are fully gapped. However, if we restrict
our attention to states without T -breaking, then upon
decreasing t�J in the d-wave superconductor (at large

FIG. 4. Dispersion of the fermionic excitation spectrum ob-
tained from the mean-field solution of H at d � 1�8. Left:
p � 2 phase at t�J � 1.5, V�t � 1, i.e., very close to the tran-
sition to the d-wave phase. Right: p � 4 with partial stripe or-
der at t�J � 1.25, Vnn�t � 0.8. Both spectra are fully gapped.
Here, kx is the momentum parallel to the charge-ordering wave
vector (i.e., the stripes run in the y direction).
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V ; see Fig. 3) the gapless fermions survive across the C -
breaking transition to the p � 2 phase; the excitation gap
then opens at smaller t�J (i.e., at a finite dimerization).

Finally, we describe the critical behavior near the
quantum transitions. Consider first the initial onset of
C -breaking from the d-wave superconductor (Fig. 1).
For large N , this transition, if second order, occurs at
the wave vector �K � 1�2, 0� which does not equal the
separation between any two gapless Fermi points; so
the charge order parameter does not couple efficiently
to the fermionic excitations. In this case, the effective
quantum critical theory contains only two real scalars
(fx , fy), describing the ordering along the two axes,
and has a three spacetime dimensional, “ relativistically”
invariant action with the symmetry of the Z4 clock model.
For smaller N , we consider it likely that the initial C
breaking will occur at a wave vector �K , 0�, which is
incommensurate with the underlying lattice, but which
does exactly equal the separation between gapless Fermi
points in the superconductor. The critical quantum
field theory will now contain two complex scalars [(Fx ,
Fy)— their phases represent the ability to freely slide the
charge-density wave with respect to the lattice] coupled to
the four “Dirac” fermions of the d-wave superconductor.
Its effective action has the form S � Sf 1 SF 1 Sl; Sf

is the fermion bilinear of the d-wave superconductor con-
taining gapless Fermi points at �K�2, K�2�, �2K�2, K�2�,
�2K�2, 2K�2�, and �K�2, 2K�2�, and we will denote the
components of cia in the vicinity of these points by faa ,
respectively (a � 1, . . . , 4); SF contains second-order
spatial and time derivatives of Fx,y and polynomial inter-
action terms, all invariant under the uniform phase change
Fx,y ! eiux,y Fx,y and under Fx $ Fy ; Sl couples the
faa and Fx,y , and the symmetries allow the following two
independent terms, free of gradients:
l1J
ab�Fxf1af4b 1 F�

xf2af3b 1 Fyf2af1b 1 F�
yf3af4b� 1 l2�Fxf

y
2af1a 1 Fxf

y
3af4a 1 Fyf

y
4af1a 1 Fyf

y
3af2a�
and their Hermitian conjugates. We propose that it is this
quantum field theory, describing the T � 0 transition at
which �Fx,y� become nonzero in the presence of supercon-
ductivity, whose T . 0 correlators describe the observed
quantum-critical scaling of the fermion momentum distri-
bution function [10]. Direct observation of charge fluctua-
tions at wave vectors �K , 0�, �0, K�, with K consistent with
photoemission, will be a test of this scenario.

We turn to the quantum transition where M symmetry
is broken which is located at lower d. Assuming that
this is at a point where the fermion spectrum is already
fully gapped, or the separation between any gapless Fermi
points is not equal to the spin ordering wave vector,
we can conclude that this transition is described by the
relativistic quantum O�3� nonlinear sigma model (for
N � 1). Such a scenario provides a natural explanation
for the crossovers in NMR experiments [3].

This paper has used quantitative calculations of a mi-
croscopic model in a large-N limit to motivate a scenario
in which superconducting, spin- and charge-density wave
instabilities compete as the system evolves from an insu-
lating antiferromagnet to a d-wave superconductor. Many
aspects are consistent with recent experiments, and more
stringent tests should be possible in the future.
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