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We show how coherent single-electron turnstile action in a picosecond time scale can be achieved
with high probability in a triple-well semiconductor structure by means of an applied time-dependent,
long-wavelength electric field. We demonstrate the turnstile behavior by studying the exact temporal
evolution of two electrons, including their Coulomb interaction, and considering both triplet and singlet
states.

PACS numbers: 73.23.Hk, 73.61.–r, 78.47.+p, 78.66.–w
A single-electron turnstile is a device where one electron
is transferred at a controlled rate between two reservoirs
[1]. Typically, the electron tunnels through an interme-
diate quantum dot region, which, thanks to the Coulomb
blockade, regulates the passage of electrons. Such a de-
vice has recently been demonstrated [2]. Those turnstiles
operated at megahertz frequencies, which are low com-
pared to the relaxation rates in those systems, and therefore
the transfer process of individual electrons was incoher-
ent. Experiments to create a semiconductor-based single-
electron turnstile operating at terahertz frequencies are
currently under way [3]. In this case, one enters the co-
herent transport regime [4,5], and the classical picture of a
point electron being either in the source or in the sink is not
adequate: the electron is described by a wave packet which
can be spread over the whole structure and we can describe
the location of the electron only through probabilities.

In this Letter we study a possible coherent turnstile de-
vice operating in a picosecond time scale. Our approach is
to study a structure with two interacting electrons in it, and
to calculate the exact time evolution of the two-electron
wave function under an external, long-wavelength field ap-
plied to induce the single-electron transport. We consider
a quasi-one-dimensional structure consisting of three quan-
tum wells. The central well is smaller than the other two
and will be called the quantum dot. The two larger lat-
eral wells will be referred to as the source (the well where
both electrons are located initially) and the sink (the desti-
nation of the electrons). These finite “source” and “sink”
are not meant to realistically mimic infinite reservoirs; as
we will see below, the electron dynamics and the turnstile
performance depend on their sizes. Instead, our purpose
is to treat the dynamics of the injection process into the
dot exactly, e.g., to avoid using an approximate transfer
Hamiltonian. This simple model gives us some insight
into how the Coulomb interaction and exchange, combined
with an appropriate time-dependent field, affect the suc-
cess of the turnstile. The results also provide a benchmark
against which one can test approximate schemes [e.g.,
time-dependent Hartree or Hartree-Fock (HF), or multiple
configuration HF], which will have to be used for more
complex models.
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A general two-electron quantum-mechanical state can
be expanded in a basis set consisting of products of spatial
and spin states. The two-electron spin states are the usual
triplet and singlet. To ensure the antisymmetry the spatial
states corresponding to the triplet and singlet must be
antisymmetric and symmetric, respectively. In this paper
we assume that there is no spin dynamics. Therefore, the
spatial part of the wave function conserves its symmetry.

We consider a quasi-one-dimensional quantum struc-
ture, whose size in the longitudinal dimension �z� is much
larger than its size L in the transversal dimensions �x, y�.
The triple quantum well potential in which the electrons
move (the “source-dot-sink” structure), V �z�, is shown in
Fig. 1(a). Because of the narrow lateral confinement, the
characteristic energies of the lateral motion are high com-
pared to the energies associated with the longitudinal mo-
tion; therefore we can assume that the transverse excited
states do not participate in the dynamics. Therefore the

FIG. 1. (a) Potential energy of the triple-well, or source-dot-
sink, semiconductor structure. Interacting two-electron ground-
state wave function of (b) the complete structure shown in (a),
and (c) the auxiliary left-well structure. The dotted lines show
the edges of the wells. Both ground states are symmetric under
particle exchange.
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two-electron wave function is written as

C�r1, r2, t� � f�x1�f�y1�f�x2�f�y2�F�z1, z2, t� . (1)

We note that C�r1, r2, t� has the same symmetry as
F�z1, z2, t� under the exchange of the electrons, since the
�x, y�-dependent part is symmetric. The time-dependent
Schrödinger equation becomes
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where E�t� is an external time-dependent electric field, and
m� is the effective mass. V1D is the Coulomb interaction
given by
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The type of quantum structure that we consider can be
made with semiconductor alloys, and we use in our cal-
culations the effective mass m� and dielectric constant e

of GaAs.
We search for turnstile action as follows: we assume

that initially both electrons are localized in the left well,
and solve the time-dependent Schrödinger equation (2)
with different external fields E�t� which are used to cause
the passage of only one electron to the right well.

All calculations are performed by using the configura-
tion interaction (CI) method [6] which represents the two-
electron wave function as

F�z1, z2, t� �
X
i,j

cij�t� �wi�z1�wj�z2� 6 wj�z1�wi�z2�� ,

(4)

where wi�z� are eigenstates of P2
z �2m� 1 V �z�. The 1

�2� sign corresponds to the singlet (triplet). The number
of terms in (4) is increased until convergence is achieved.
The expansion (4) is substituted in the Schrödinger equa-
tion (2) and the coefficients cij�t� are calculated numeri-
cally employing the fourth-order Runge-Kutta method.

As the initial state, we take the ground state of an
auxiliary single-well structure that has only the left well of
the complete structure shown in Fig. 1(a). We calculate
its ground state by diagonalization of the interacting two-
electron Hamiltonian, and using V �z� for the auxiliary
structure. We find—as expected— that the ground state
is the singlet. The ground state of the auxiliary single-
well structure [Fig. 1(c)] is not a stationary state of the
complete structure. However, it has a very long lifetime
in the complete structure compared to the duration of our
simulations, which makes it a convenient choice as an
initial state localized in the left well.

The probability that one electron is in the left well and
the other one is in the right well is given by

PRL�t� � 2
Z

L
dz1

Z
R

dz2 jF�z1, z2, t�j2. (5)

The ideal turnstile action can be defined as attaining
PRL�t� � 1 at some time t, from the initial PRL�t � 0� �
0. To reach this goal we tried a number of different func-
tional forms for the time dependence of E�t�. The simplest
E�t� that can be applied is a constant bias field E�t� � E0.
Figure 2(a) shows the maximum value of PRL, Pmax

RL , as a
function of E0, achieved during a simulation of 3.3 ps of
duration. Pmax

RL shows a dependence on the bias field remi-
niscent of a resonant tunneling transmission. We mention
that longer or shorter simulation times produce slightly dif-
ferent results, as expected due to the complex time evolu-
tion of the two-electron wave function. Since our interest
here is in exploring turnstile action in times as short as
possible (to minimize the effects of phonon scattering),
we work mostly within a window of a few picoseconds.
We emphasize, however, that our results are not modi-
fied significantly within time intervals of at least 20 ps.
As an additional check, we also did an analogous calcu-
lation recording the first local maximum of PRL versus
E0, with results qualitatively similar to those of Fig. 2(a).
The highest value of Pmax

RL achieved in Fig. 2(a) is 0.86 (at
E0 � 5 kV�cm). This means that with a constant field we
can achieve a “success rate” of at most 86% for turnstile
action. We mention that if the field E�t� is switched on
slowly up to a constant value, rather than abruptly as we

FIG. 2. Maximum probability that one electron is in the
right well while the other electron is in the left well versus
(a) amplitude of a dc electric field; (b) frequency of an
oscillatory electric field of amplitude E0 � 5 kV�cm. The
initial state is shown in Fig. 1(c).
3913



VOLUME 83, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 8 NOVEMBER 1999
have shown here, slightly higher values of Pmax
RL can be

achieved, up to roughly 0.9. This value depends on the
speed of the switching-on of the field.

We have tested several variations of the original struc-
ture in the simulation with a constant field, in an attempt
to improve the performance of the turnstile. One variation
consisted of enlarging the right well (the sink), to reduce
the effect of the reflection of the electrons at the right-
hand-side end of the structure, thereby increasing the time
the electron will spend in the right well. The size of the
enlarged sink was 500 Å instead of the original 300 Å;
the highest Pmax

RL obtained was �0.84. Enlarging only the
left well (the source) to 600 Å produced a highest Pmax

RL �
0.52, and enlarging both source and sink to 600 Å gave a
highest Pmax

RL � 0.3. As we can see, a larger sink by itself
does not enhance the turnstile performance, and a larger
source seems to have in general a negative effect. Another
variation consisted of reducing the lateral size L of the
structure to make it more strictly one dimensional, which
strengthens the quasi-one-dimensional Coulomb repulsion
[Eq. (3)] and should, in principle, facilitate the separation
of the two electrons. We took L � 20 Å (all other results
reported in this Letter are for L � 50 Å). Again, the re-
sult for this modified structure was not substantially better
than for the original one: the highest Pmax

RL � 0.87.
We have also investigated a number of double-well

structures (without the central dot) and found that results
similar to the one presented in Fig. 2(a) can be obtained.
With a barrier width of 50 Å, a high PRL probability of
0.92 is obtained for a field value of E0 � 7 kV�cm at
a time of 3 ps. One difficulty with the double-well po-
tentials is that the initial state (localized in the left well)
is more unstable than in the original structure and tunnels
through the barrier even in the absence of the applied field.
This effect can of course be reduced by increasing the
barrier width, but this in turn affects the tunneling rate and
inhibits the turnstile action. In contrast, this problem does
not arise in the triple-well structure, because the central
dot is effective in suppressing tunneling when the initial
state is off-resonance with the dot, and provides a resonant
tunneling pathway when the appropriate voltage is applied.
An additional advantage of the triple-well structure is that
the central dot can be gated individually, and thereby its
potential can be used for better control. In the rest of
this Letter we concentrate on the triple-well structure, and
will report complete results for double wells in a separate
publication.

In Fig. 3 we plot (dashed line) the probability PRL as a
function of time for the value of E0 that gives the highest
Pmax

RL seen in Fig. 2(a). We note that PRL reaches its first
and highest local maximum in less than 1 ps, indicating
the typical time scale for tunneling through the central
dot. We next explore the effect of changing the applied
field to another constant value at the time when Pmax

RL is
obtained. We find two interesting results, shown in Fig. 3:
(i) the high value of PRL can be maintained for long
3914
FIG. 3. Top: time evolution of the probability that one
electron is in the right well while the other electron is in the left
well. Bottom: corresponding applied electric fields. Dashed
line: constant field E0 � 5 kV�cm, which gives the highest
Pmax

RL shown in Fig. 2(a). Solid line: the field after �0.9 ps
is chosen to “lock” the high value of PRL attained at that time.
Dotted line: the field between �0.9 and �3 ps brings PRL to
its highest value, �0.97, and the field after �3 ps maintains
approximately that value.

times (solid line), and (ii) an even higher value of PRL
(� 0.97) can be obtained at some later time (dotted line).
These results are obtained for specific ranges of values
of the new E0. Interestingly, the high value of PRL �
0.97 can also be “locked” in time to a large extent by
changing again the constant bias to a suitable value when
the maximum occurs, as shown by the dotted lines. The
small oscillations in PRL after its high value is stabilized
(after 0.9 ps for the solid line and after 3 ps for the dotted
line) could not be eliminated by chosing other field values.
They represent a quantum beat between a few two-particle
eigenstates of the structure with the applied field, excited
coherently by switching the field suddenly on (a detailed
analysis of this effect will be presented elsewhere). The
results shown in Fig. 3 are the closest we have come
to ideal turnstile action, with the added desirable feature
that the tunneling of only one electron through the central
dot can be followed by a sustained separation of the two
electrons by simply changing the value of the constant
external field.

Besides piecewise-constant fields, we considered strong
oscillatory terahertz fields of different frequencies (pro-
duced, for example, by a free-electron laser). In Fig. 2(b)
we show the maximum PRL as a function of frequency for
the field E�t� � E0 cos�v0t 1 d�, with E0 � 5 kV�cm
and d � 0. We note that high “success rates” close to 90%
can be achieved for certain frequencies, similar to those ob-
tained with constant fields. Introducing a phase d � p�2
changes the result at low but not at high frequencies, when
the period of the field is short compared to the typical tun-
neling time of 1 ps.

Figure 4 illustrates the effect of the Coulomb interac-
tion and of the symmetry of the two-electron spatial wave
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FIG. 4. Maximum PRL versus applied dc electric field.
(a) Symmetric and (b) antisymmetric spatial wave function.
Solid lines: with Coulomb interaction. Dotted lines: without
Coulomb interaction.

function. We plot the maximum PRL as a function of the
amplitude E0 of a constant field switched-on at t � 0 [as in
Fig. 2(a)], for symmetric and antisymmetric spatial wave
functions, with and without Coulomb interaction. The ini-
tial states are, as before, the ground states of the auxiliary
left-well structure, correspondingly symmetric or antisym-
metric, and interacting or noninteracting. The simulations
have a duration of �3.3 ps. In general, the removal of
Coulomb repulsion does not change the qualitative nature
of the results, but it affects the position and strength of
the transmission peaks. The tendency is, as expected, that
the resonances with Coulomb repulsion happen at lower
fields than without interaction, for both types of wave func-
tions, since the repulsion favors the separation of the elec-
trons. For symmetric wave functions, the strength of the
first peak is much larger with than without Coulomb re-
pulsion. This difference is also present for antisymmetric
wave functions, but it is less marked, since Pauli exclusion
helps the separation of the two electrons in the absence of
Coulomb interaction. For distinguishable noninteracting
electrons we found that the probability PRL remains low
at all times compared to the peak values seen in Fig. 4,
which underlines the importance of treating the electrons
in the turnstile as a quantum many-body system of indis-
tinguishable particles.

The Coulomb interaction causes what we term a dy-
namic Coulomb blockade effect in the central dot, evi-
denced by the fact that the probability of both electrons
being in the dot at the same time is negligible when the
Coulomb interaction is included, but not when the inter-
action is switched off. Although this joint probability re-
mains very small at all times, it is, however, not strictly
zero. In this sense the dynamic Coulomb blockade effect
differs from the usual semiclassical Coulomb blockade. In
the latter a full electron is either in the dot (blockade) or
outside (no blockade); in the former the wave packet rep-
resenting the electrons can be spread all over the structure,
a fact that affects the Coulomb interaction, and hence the
blockade. In this case, the charging energy, defined as
the energetic cost for the small time-dependent amplitude
to find both electrons in the dot, is described by the full
Coulomb interaction (3), and not by a phenomenological
capacitive charging energy.

In conclusion, we studied theoretically the time evolu-
tion of two interacting electrons in a triple-well structure,
to explore the possibility of creating a coherent single-
electron turnstile controlled by an external uniform elec-
tric field. We found that it is possible to achieve the
passage of a single electron through the quantum dot with
a high probability by using simple constant and sinusoidal
fields, and that it is possible to create and maintain the spa-
tial separation of the electrons by using piecewise-constant
fields. We also document the existence of a dynamic, fully
quantum-mechanical version of the Coulomb blockade ef-
fect in which the joint probability for both electrons be-
ing in the dot region is negligible due to their Coulomb
repulsion.
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