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Correlated Fermions in a One-Dimensional Quasiperiodic Potential
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We study analytically one-dimensional interacting spinless fermions in a Fibonacci potential. We
show that the effects of the quasiperiodic modulation are intermediate between those of a commensurate
potential and a disordered one. The system exhibits a metal-insulator transition whose position depends
both on the strength of the correlations and on the position of the Fermi level. Consequently,
the conductivity displays a power-law-like size and frequency behavior characterized by a nontrivial
exponent.
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Since the discovery of quasicrystals in 1984 by Shec
man et al. [1], the electronic properties of quasiperiod
systems have been intensively studied. These meta
alloys are notably characterized by a low electrical co
ductivity s which increases when either temperature
disorder increases [2]. The very low temperature behav
of s is still an open question and depends on the mat
als. For example, in AlCuFe [3] and AlCuRu [4], a finit
conductivity at zero temperature is expected, whereas
cent results [5] seem to confirm a Mott’s variable ran
hopping mechanism fori-AlPdRe down to 20 mK.

Many theoretical works have attempted to understa
how the quasiperiodic order could induce such exotic
haviors. In particular, the case of independent electr
in one-dimensional (1D) systems has been deeply inv
tigated for different structures (Harper model, Fibonac
chain,. . . [6,7]), giving rise to singular continuous spec
tra with an infinite number of gaps. Moreover, the co
responding eigenstates are neither extended nor local
but critical, and are known to be responsible of anomalo
diffusion [8,9]. For higher dimensional systems, simil
studies had also displayed complex and intricated spec
with analogous characteristics of the electronic states [1
13]. However, given the complexity of these problems d
to the geometry alone, the interactions between electr
have often been neglected. Even in 1D incommensu
structures, few results have been obtained [14–18].

In this Letter, we investigate the effect of the inte
actions considering a Hubbard-like model for spinle
fermions embedded in a Fibonacci potential. We take
correlations into account using a bosonization techniq
whereas the quasiperiodicity is treated perturbative
Using a renormalization group approach, we show that
quasicrystalline system displays a metal-insulator tran
tion (MIT) induced by the interactions. The correspondi
critical MIT point is found to be strongly dependent o
the Fermi level. In marked contrast with the simple cas
of disordered or commensurate potentials, the quasip
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odicity leads to a power-law-like dependence of t
conductivity either in size or frequency with an expone
depending both on the interactions and on the position
the Fermi level. Though our analysis is performed f
a Fibonacci potential, we stress that these results can
extended to any potential having a nonflat dense Fou
spectrum.

Let us consider a model of interacting spinless fermio
on a quasiperiodic lattice described by the followin
Hamiltonian:

H � 2t
X
�t,j�

c
y
i cj 1 V

X
i

nini11 1
X
i

Wini , (1)

wherec
y
i (respectively,ci) denotes the creation (respec

tively, annihilation) fermion operator,ni � c
y
i ci repre-

sents the fermion density on sitei, and �· · ·� stands for
nearest neighbors pairs. The quasiperiodicity is provid
by the Wi ’s that take two discrete valuesWA � 1l�2
or WB � 2l�2 given by the spatial modulation of the
Fibonacci chain. In fact, we consider a periodic appro
mant of this structure withFl sites per unit cell that can be
obtained byl iterations of the substitution rules:A ! AB,
B ! A, whereFl is the lth element of the Fibonacci se
quence defined by

F1 � F2 � 1 ,

Fl11 � Fl 1 Fl21 .
(2)

We denotep � Fl22, s � Fl21, n � Fl , andn0 � s (re-
spectively,n0 � p) if l is even (respectively, odd). In the
quasiperiodic limit�l ! `�, the ratios�p converges to-
ward the golden meant � �1 1

p
5 ��2. It is also useful

to compute the Fourier transform of the potentialW. This
can be done via the conumbering scheme [19]:

Ŵ

µ
q �

2pm
na

∂
�

lei�pmn0�s21���n sin�pmn0s
n �

n sin�pmn0

n �
, (3)
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for m � 1 to n 2 1 (a is the lattice spacing). A global
shift of the Wi allows us to deal with a zero-averaged
potential so that we can set Ŵ�0� � 0. The interest
of this potential lies in the fact that it is perturbatively
nontrivial (the Fourier transform is dense in �0, 2p�,
in the quasiperiodic limit). Moreover, the underlying
substitution rule provides a self-similar structure that can
be readily seen in Fig. 1.

If the quasiperiodic perturbation is small enough, we
can focus on the low energy properties around the Fermi
level. To treat the interactions, it is convenient to use a
bosonic representation of the fermion operators. In this
representation, the Hamiltonian (1) becomes

H � H0 1 HW , (4)

where H0 stems from the periodic part �l � 0� of (1) and
reads in the continuum limit [20]:

H0 �
1

2p

Z
dx

∑
�uK� �pP�2 1

µ
u
K

∂
�≠xf�2

∏
. (5)

In (5), f is a boson field related to the long wavelength
part of the fermionic density by r�x� � 2=f�x��p, and
P is its canonically conjugate field. All the interactions
are absorbed in the two constants u and K, where u is the
renormalized Fermi velocity [in the noninteracting case
�K � 1�, u � yF � 2ta sin�kFa�], and K is the parame-
ter controlling the decay of various correlation functions.
For weak interactions, u and K can be perturbatively ex-
pressed in terms of the microscopic parameters t and V:

uK � yF ,
u
K

� yF 1
V
p

�2 2 2 cos�2kFa�� . (6)

Actually, the representation (5) is more general [21,22]
and gives the correct low energy description of the
system, even when the interactions are strong provided
the exact u and K parameters are used. The quasiperiodic
part HW can also be written in terms of the boson

0 1 2 3 4 5 6

q

|W|^

FIG. 1. Fourier transform of the diagonal Fibonacci potential
for the 15th approximant with F15 � 610 sites per cell.
fields [23]:

HW �
1

pa

Z
dx W�x� cos�2kFx 2 2f�x�� , (7)

where kF is the Fermi wave vector and a is a short
distance cutoff of the order of the lattice constant a.

The effect of the quasiperiodic potential is computed
using a perturbative renormalization group (RG) ap-
proach, similar to the one for a single harmonic [24].
The RG equations for the potential and the interaction
parameter read

dK
dl

� 2
K2

2
G�l� , (8)

dyq
dl

� �2 2 K�yq , (9)

G�l� �
X

´�61

X
q
y2
qJ��q 1 ´2kF�a�l�� , (10)

where yq � aŴ�q��u is the dimensionless Fourier com-
ponents of W, and a�l� � a�0�el is the renormalized
short distance cutoff. In (10), the sum over q is performed
for q � 2pm�n with m [ �1, n 2 1�, and J is an ultra-
violet regulator whose precise form depends on the cut-
off procedure. For convenience, we choose a Gaussian
form J�x� � e2x2

but, as discussed in Refs. [25,26], the
physical properties are independent of this choice pro-
vided J decreases sufficiently rapidly. Note that the renor-
malization of the velocity u is neglected since it is of
higher order in the potential amplitude l.

The physical properties of the system are determined
by the long distance behavior of K. If K converges
toward a fixed point, the system remains metallic but
with the renormalized parameter �K�, u��. Otherwise,
the solution flows to a strong coupling regime whose
physics depends on the precise nature of the potential W.
Note that expression (7) is valid for any lattice potential
perturbatively treated. For a single harmonic �Ŵ�q� �
ldq,q0� two situations occur. If q0 fi 2kF , R stops the
renormalization of K at large enough length scale and the
potential is irrelevant. On the contrary, if q0 � 2kF , one
recovers the usual metal-insulator transition at Kc � 2.
In the disordered case, the Ŵ�q�’s are given by a uniform
averaged distribution: Ŵ��q�Ŵ�q0� � ydqq0 . In the limit
of weak disorder, (9) can be integrated neglecting the
renormalization of K: y�l� � y�0�e�22K�l . Then, Eq. (8)
simply becomes

dK
dl

� 2K2Ce�322K�l , (11)

where C is a constant. Equation (11) defines a critical
value Kc � 3�2, separating an insulating phase �K , Kc�
from a metallic state �K . Kc� [27].

We now investigate the case of the Fibonacci potential.
For a given maximum renormalization length scale lmax
corresponding to accessible physical range, different cases
3909
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must be distinguished. If the Fermi momentum 2kF
is close to a main peak of the Fourier spectrum (3),
then, at long distance (i.e., l � lmax), the flow of K is
controlled by this harmonic [see Fig. 2 (upper curve)] and
its behavior is similar to the periodic one.

There is a transition at Kc � 2, with a metallic phase
for K . 2 where the quasiperiodic potential is irrelevant.
In this phase, the system has gapless excitations whose
correlations are given by (5) with renormalized parame-
ters. For K , 2, the quasiperiodicity is relevant and the
system has a charge gap given by

D � y
1��22K�0��
2kF . (12)

Note that, for K � 1 (noninteracting case), one obtains a
linear scaling of the gap opening. Our methods allow
us to recover very simply the perturbative results [28]
derived by quite different methods for the particular case
of noninteracting electrons. The effect of the interactions
is thus essentially to change the scaling of the gaps and to
allow a MIT at Kc � 2 (attractive interactions).

A more unusual behavior is encountered when the
Fermi level is far from a dominant harmonic of the
quasiperiodic potential. Indeed, the low energy properties
up to lmax are no more dominated by the ultimate presence
of a gap or not but by the precise dependence of G with
the scale. The specific feature of the quasiperiodic case is
that, contrary to the disordered case, G a priori depends
on the Fermi level. As shown in Fig. 3, it is reasonable to
approximate this behavior by an exponential scaling. To
know whether such a description is asymptotically correct
or not, one would need an analytical calculation of G, a
rather complicated task. In this context, the flow of K is
given by

dK
dl

� 2K2De�422K2m�l , (13)

where D is a constant.
The position of the MIT point is then given by Kc �

2 2 m�2. In addition, the Fibonacci potential seems to
provide a unique value m 	 2 (see Fig. 3) that leads to a

FIG. 2. Behavior of G for 2kF � 2.63 (lower curve) and
2kF � 2.4 (upper curve).
3910
transition for the noninteracting point Kc � 1. It would
be interesting to know if this result remains true beyond
the perturbative theory, and if it is a generic property
of self-similar potentials. Finally, note that intermediate
cases can also occur [see Fig. 2 (lower curve)] for which
G cannot be naively approximated by an exponential
law. In this context, one cannot simply extract a critical
behavior from the RG equations. This deserves further
investigations.

So, the quasicrystal differs from a periodic one, for
which the gap acts only for a given position of the Fermi
level with Kc � 2, and a disordered system for which the
potential is relevant regardless of the position of the Fermi
level, but below a constant critical value Kc � 3�2. This
important modification of Kc is reminiscent of a correlated
disorder with long range correlations in space for which

the averaged disorder potential Ŵ��q�Ŵ�q0� � dqq0D�q�
is not constant.

The consequences of the scale dependence of G can
be directly seen on transport quantities. In the regime
where the RG equations are valid, the conductivity can be
computed using a perturbative method. The simplest is to
use the so-called memory function formalism [29] where
the conductivity is expressed as s�v� � i��v 1 M�v��.
The memory function M, contrarily to s, can be computed
perturbatively in the scattering potential. We refer the
readers to [30] for the technical details and give here only
the main results. The high frequency optical conductivity
and the dependence of the resistance with respect to the
system size L � el are given by

s�v� ~ ImM�lv��v2, (14)

R�L� ~ L ImM�lL� , (15)

where in each case the memory function M is computed
at a renormalized frequency scale lv � log�t�v� or at
a renormalized size scale lL � log�L�a�0��. As for the
single harmonic case [31], a perturbative calculation of M
in power of the scattering potential gives

M�l� ~ G�l�e2l . (16)

FIG. 3. Behavior of G for 2kF � p (lower curve) and 2kF �
1.95 (upper curve). Both cases have been offset for clarity.
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This expression remains valid as long as one remains in
the perturbative regime, i.e., as long as the renormalization
of K in (8) remains small. This is true for all length
scales in the metallic regime K . Kc, where the potential
W is irrelevant. For K , Kc, this holds until a certain
length scale LSC corresponding to the strong coupling
limit. Using (15) and (13), one straightforwardly gets the
resistance for the quasiperiodic system:

R�L� � L422K2m, (17)

so that R�L� � L422K , R�L� � L322K for the commen-
surate and disordered cases, respectively. As foreseen, in
the regime where the scattering potential is relevant the
resistance increases with the scale. For noninteracting
�K � 1� disordered electrons we simply recover the
Ohm’s law, which is valid below the localization length.
For a quasicrystal with a dense Fourier spectrum, we find
a nonuniversal power law increase of the resistance, with
an exponent depending both on the interactions and on
the position of the Fermi level. Correspondingly, there is
a power law frequency dependence of the optical conduc-
tivity s�v� � �1�v�522K2m. The properties of potential
W have thus a direct impact on the increase of the resis-
tance. This is in contrast with both the disordered and the
commensurate cases where the scaling of the resistance
depends only upon the interactions. Such a behavior and
the relationship between the conductivity exponent and the
spectrum of the quasiperiodic potential should be testable
in numerical simulations, or in artificially engineered
systems. Note that for the noninteracting case, some
numerical observations of a power law behavior for the
conductivity have already been reported [32].

For K , Kc, the previous perturbative analysis ceases
to be valid beyond the length scale LSC for which
G�lSC� � 1. For the commensurate and the disorder case,
this defines the correlation length respectively associated
to the gap and to the localization length. Above LSC ,
the resistance grows exponentially with the size of the
system R�L� � eL�LSC . For the quasiperiodic case, our
analysis shows that a corresponding typical length exists
as well. However, its physical interpretation and the
physical behavior above LSC are still to be understood.
Since for a noninteracting system the wave functions of a
quasiperiodic system exhibit algebraic decay, a reasonable
guess is that above LSC the resistance keeps increasing as
a power law but very likely with another exponent than
4 2 2K 2 m. Clearly, the investigation of this strong
coupling regime deserves further studies.

We thank R. Mosseri, B. Douçot, and Cl. Aslangul for
fruitful discussions.
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