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Stiff Monatomic Gold Wires with a Spinning Zigzag Geometry
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Using first-principles density-functional calculations, gold monatomic wires are found to exhibit a
zigzag shape which remains under tension, becoming linear just before breaking. At room temperature
they are found to spin, which explains the extremely long apparent interatomic distances shown by
electron microscopy. The zigzag structure is stable if the tension is relieved, the wire holding its
chainlike shape even as a free-standing cluster. This unexpected metallic-wire stiffness stems from the
transverse quantization in the wire, as shown in a simple free electron model.

PACS numbers: 68.65.+g, 71.15.Mb, 73.20.Dx, 73.40.Jn
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The manipulation of matter at the atomic scale [1]
heralding a technological revolution and opening new
search avenues. A spectacular achievement is the re
fabrication [2,3] of monatomic chains of gold atoms, t
ultimate thin wires. Metallic nanowire contacts can
created with the scanning tunneling microscope [4–
with mechanically controllable break junctions [7], o
even with simple tabletop setups [8]. The relationsh
between conduction, geometric, and mechanical pro
ties have been studied by simultaneous measuremen
conductance and applied force [9], by atomistic [10,1
continuous [12,13], or mixed [14,15] model simulation
and by first-principles calculations [16–19]. Recent
Ohnishi et al. [2] visualized nanometric gold wires b
transmission electron microscopy (TEM). Surprisingly,
a stable bridge of four atoms connecting two gold tips,
atoms were spaced by 3.5–4.0 Å. Later reports [20] h
even increased this distance up to�5 Å, a value much
larger than that in Au2 (2.5 Å) and in bulk gold (2.9 Å).
Gold monatomic chains with a length of four or mo
atoms were independently associated by Yansonet al. [3]
to the last conductance plateau during stretching (cl
to one conductance quantum2e2�h). The histogram of
these plateau lengths showed maxima at regular interv
which may be related to the distances between gold at
in the wire [21].

In this work we study the structure and stabili
of gold monatomic wires by first-principles densit
functional calculations [22]. We useSIESTA [23], a
code designed to treat large systems with local ba
sets which has been already used to study gold clus
[24]. Tests were performed for Au2 and bulk gold,
using both the local density approximation (LDA) [25
and the generalized gradient approximation (GGA) [2
Core electrons were replaced by scalar-relativistic no
conserving pseudopotentials [27]. Valence electrons w
described with a basis set of double-z s, p, and d
numerical pseudoatomic orbitals. Real- and reciproc
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space integration grids were increased until a total-ene
convergence better than 2 meV�atom was achieved. The
results [28] are in very good agreement with previo
calculations, using the same functionals, and with t
experimental geometries and vibration frequencies [2
The GGA improves the binding and cohesive energi
but not the geometries, which are the main focus of t
work.

The wire calculations were performed for infinit
monatomic chains, using periodic boundary condition
as well as for finite wires of various lengths, either fre
standing or confined between small pyramidal tips. A
the calculations were repeated with the LDA and t
GGA, and both ferromagnetic and antiferromagne
solutions were searched. In every case, the geom
was relaxed until the maximum forces were smaller th
10 meV�Å (16 pN). As an additional cross-check, som
critical geometries were recalculated with a differe
code, using a plane wave basis set. The results will
presented in full elsewhere. In short, we have found
qualitative differences, and only very minor quantitativ
differences between the finite and infinite wires, betwe
plane wave and local basis sets, and between LDA
GGA, and no magnetic solutions could be stabilized
any wire length. We present in what follows theSIESTA

LDA results for the infinite wires, except where stated.
Figure 1 shows the wire geometry and the bindi

energy as a function of the wire length. Except wh
very stretched, the wire adopts a nonlinear, planar zig
geometry, with two atoms per unit cell. Unconstraine
relaxations with larger cells did not result in longer pe
ods, nor in out-of-plane deformations. The energy sho
a shallow minimum at a length of 2.32 Å�atom, with a
bond angle of 131±. The stability of this geometry was
demonstrated by checking that the dynamical matrix, c
culated in a cell of 16 atoms, had no negative eigenv
ues. For comparison Fig. 1c shows the energy of a w
constrained to a linear geometry, which has a minimu
© 1999 The American Physical Society
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FIG. 1. First-principles, density-functional results for the
bond angle a (a), and bond length r (b) in a monatomic gold
wire with zigzag geometry, as a function of its length per atom.
(c) Binding energy E in the zigzag (solid symbols) and linear
wires (open symbols).

0.24 eV�atom higher, at a wire length 0.25 Å longer, than
in the zigzag geometry. This difference in wire length
is almost entirely due to the change in bond angle, since
the bond distances differ by only 0.02 Å between the two
minima. The bond angle increases with stretching, but the
wire becomes linear only shortly before breaking.

The comparison between the band structures of the
linear and zigzag wires (Fig. 2) offers some hints for
understanding their relative stability. In the linear chain,
the overlap between the filled d states broadens the d
bands until they reach the Fermi level, destabilizing the
wire with their associated high density of states. For
the same wire length, the zigzag configuration allows
a larger bond distance; that brings back the d bands
below the Fermi level and leaves a single s band crossing
it. This is consistent with the observation of a single
conduction channel in the monatomic wires [3]. A Peierls
dimerization instability is expected since the Fermi wave
vector is at the edge of the two-atom Brillouin zone. We
have observed, however, that the magnitude of this gap-
opening instability is negligible, only slightly noticeable
just before the wire breaks, and thus playing no substantial
role in the physics described here.

Although the appearance of a zigzag instability under
compression may seem natural, its presence in a stretched
wire is more surprising. Furthermore, its stabilization at a
finite wire length is even harder to understand, since one
FIG. 2. Electronic band structure of the linear (a) and zigzag
(b) wires for a length of 2.32 Å�atom. The linear-wire bands
have been folded onto a two-atom Brillouin zone to facilitate
the comparison. The energies are relative to the Fermi level.

would expect the wire to collapse into a compact, high-
coordination structure typical of metals. However, we
find that even free-standing clusters of four or eight atoms
(the sizes calculated) are also stable with a zigzag chain
structure. A possible chemical-bond directionality effect
was first considered, but the electron density showed
a clear homogenization tendency, with a net depletion
in the interatomic regions. A zigzag stabilization due
to covalent bonding was thus discarded. The origin
appears very naturally, however, in a delocalized electron
picture, from the transverse quantization of the electron
states. To see this, we model the wire as an infinite
straight tube with a rectangular section b 3 c and a
length a per atom (or per s electron). The difference
between b and c accounts for the extra width due to
the zigzag (see the inset in Fig. 3). Consistently with
the standard jellium model [13], we assume a fixed

FIG. 3. Energy versus wire length for a simple model of
the wire, considered as a free-electron tube of fixed volume,
as shown in the inset, with a0 �

p
ab � 3 Å and d � 2 Å.

Dashed and solid lines correspond to allowing one or two
occupied bands, respectively.
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volume per atom abc, but we allow a larger “box”
section �b 1 d� 3 �c 1 d� to account for an electron
“spillage” d�2 out of each jellium edge [30]. Accepting
from the ab initio calculation that the zigzag is planar,
we also fix its thickness c or, equivalently, a0 �

p
ab.

The resulting free-electron energy is shown in Fig. 3 as
a function of the wire length a, for reasonable values of
a0 and d. With a single occupied band, the compromise
between the transversal and longitudinal kinetic energies
results in a single minimum (dashed line). Including
the second band, which becomes partially occupied at
somewhat shorter lengths, allows the energy to decrease
again (solid line), reproducing all the qualitative features
observed in the ab initio curve, such as the positions
of the maximum, the minimum, and the point at which
the second band crosses the Fermi level (1.83 Å�atom).
The basic physics that this model illustrates is the higher
stability of certain wire sections, due to the transverse
quantization of the delocalized electron states [13]. This
shell structure effect, which has been recently observed
for sodium wires [31], is similar to the so-called magic
numbers (particularly stable sizes) of small metal clusters
[32]. The zigzag shape is a particular realization of these
stable sections for the monatomic gold wires.

In agreement with previous ab initio calculations [19],
we find that the wire becomes unstable and breaks
spontaneously when pulled by a force of more than
2.2 nN, i.e., beyond a maximum length of 2.9 Å�atom,
much shorter than that apparently observed in stable
wires [2]. We offer here an explanation for this puzzling
discrepancy, based on the predicted zigzag geometry: if
the actual wires observed have an odd number of atoms,
with those at the extremes fixed by the contacts, the odd-
numbered atoms would stay almost fixed on the same
axis, while the even-numbered ones could rotate rapidly
around that axis, offering a fuzzy image that could be
missed by the TEM. We have calculated the relaxed
geometry and the rotation energy barrier for a seven-atom
wire suspended between two pyramidal tips made of three
atoms in contact with the wire, plus six atoms below. The
latter are kept fixed in their bulk positions. The resulting
stable geometry is almost equal to that of the infinite wire,
and the rotation barrier is only 60 meV for the entire
wire. The effect is illustrated in Fig. 4, where we show
the electron density averaged over rotated configurations.
Although not directly comparable to a TEM image, it can
indeed be qualitatively appreciated that the odd-numbered
atoms appear much sharper than the even-numbered
ones, giving the impression of a four-atom wire with
a large interatomic separation, similar to that observed
experimentally. The intensity of a given atom is, roughly,
inversely proportional to its rotation radius and, for the
structure in Fig. 4, Reven�Rodd � 5. From the energy
barrier obtained, we estimate that the thermal rotation
would slow down to the millisecond scale, allowing the
zigzag visualization, only for temperatures below �40 K.
3886
FIG. 4. Calculated electron density of a seven-atom wire
suspended between two small pyramidal tips, averaged over all
rotation angles around the wire axis, with a Boltzmann factor at
T � 300 K. The numbers are relaxed distances in angstroms.

In a wire with an even number of atoms, all of them
would rotate with an appreciable radius, making their
visualization more difficult.

Figure 5(a) shows the calculated transversal and lon-
gitudinal phonon frequencies at G, for the zigzag wire,
as a function of its length. Negative values indicate
modes with imaginary frequency, implying the break-
ing of the unstable wire. At the wire’ s equilibrium
length (2.32 Å�atom), the G-point frequencies are 113
and 219 cm21, for the transversal and longitudinal modes,
respectively. These are quite larger than the bulk phonon
frequencies, but comparable to those of the dimer (the

FIG. 5. (a) Wire-length dependence of the optical phonon
frequencies of a zigzag wire at G, calculated using the
frozen-phonon method. Solid and open circles stand for
the longitudinal and transversal modes respectively. For
comparison, we also show the longitudinal phonon frequency at
X (which folds to G in a two-atom cell) for a wire constrained
to be linear (squares). (b) Phonon dispersion curves for a
zigzag wire of 2.62 Å�atom length.
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wire interatomic distance is only slightly larger than that
in Au2). Figure 5(b) shows the phonon dispersion rela-
tions for a wire length of 2.62 Å�atom, obtained from
the full dynamical matrix in a supercell of sixteen atoms,
calculated with finite differences [33]. We hope that the
comparison of the results in Fig. 5 with those of point
contact spectroscopy experiments [34] will help to con-
firm our predicted zigzag distortion.
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