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It is shown that toroidal magnetic field ripple induced thermal and fast ion loss can drive the radial
electric field to bifurcate over the local maximum of the parallel (or poloidal) viscosity. The subsequent
plasma profile evolution reduces the hot particle density and relaxes the radial electric field. This
behavior is consistent with the experimental observations in enhanced reversed shear mode in tokamaks.

PACS numbers: 52.55.Fa, 52.25.Dg, 52.25.Fi
To make an economical nuclear fusion reactor, it is
necessary to improve its plasma confinement property. An
improved confinement mode (i.e., H mode) in the edge
region of a tokamak and a stellarator was observed [1–
3]. The mechanism for the confinement improvement
is due to the bifurcation of the radial electric field Er

and the subsequent turbulence suppression due to the
radial gradients of the E 3 B and the diamagnetic angular
velocity [4–6]. Here, E is the electric field and B is the
magnetic field.

Recently, the improved confinement modes in the core
region were also observed [7–9]. There are two basic
types of the core confinement improvement modes. One
is the enhanced reversed shear (ERS) mode [7,8], and
the other is the negative central shear (NCS) mode [9].
Both of these phenomena can be explained by the same
mechanism that triggers the improved edge confinement
mode. Although the magnetic shear is reversed in both
modes, i.e., the radial gradient of the safety factor q
is positive in the region close to the magnetic axis,
the mechanisms that generate Er are quite different.
In the NCS mode, Er is generated by the toroidal
rotation associated with the unidirectional neutral particle
beam momentum injection. In the ERS mode, however,
the unidirectional neutral particle beam momentum is
negligible. It is observed experimentally that in the ERS-
mode poloidal plasma rotation suddenly increases (or
bifurcates) to a large value and subsequently relaxes in
the transport time scale [10,11]. The magnitude of the
poloidal rotation excursion in terms of the poloidal Mach
number is of the order of unity. While the Er profile
in the NCS mode can be easily explained by the toroidal
momentum input associated with the neutral particle beam
injection, the bifurcation and relaxation of Er in the ERS
mode cannot be easily explained. Here, we advance a
theory to explain such an important phenomenon without
resorting to unquantifiable parameters.

Note that it is quite unusual that in the relaxation
process there is no back bifurcation involved in the ERS
mode. Thus, the parameter-dependent nonlinearity in our
0031-9007�99�83(19)�3840(4)$15.00
theory may serve as a paradigm for other similar nonlinear
phenomena in nature as well.

It has been shown that toroidal magnetic field ripple
induced particle fluxes can drive the radial electric field
Er to bifurcate over the local maximum of the poloidal
(or parallel) viscosity [12]. This mechanism provides an
explanation for the bifurcation of Er observed in ERS
mode in tokamaks. The radial electric field, however,
relaxes in a few hundred ms after the bifurcation [10,11].
To explain this relaxation phenomenon, either the rippled
induced ion loss has to decrease or the electron loss has
to increase or a combination of both. While there are
magnetohydrodynamic (MHD) activities observed after
the bifurcation [10], it is difficult to quantify the particle
loss associated with this MHD activity unambiguously. It
would be better if a theory can be developed based on the
reduction of the ion ripple loss after bifurcation to explain
the relaxation phenomenon. The reason is that ion ripple
loss can be more accurately determined than electron loss
resulting from MHD activities.

Here, we demonstrate the relaxation of Er by including
both thermal and fast ion ripple losses. Fast ion ripple loss
assists bifurcation. After bifurcation, plasma confinement
improves and thermal ion density increases. The increase
of the thermal ion density makes it harder to neutral beam
particles to penetrate. Fast ion density and its ripple loss
are therefore reduced after the bifurcation. The radial
electric field is then relaxed. This mechanism seems to
be applicable for the ERS mode observed in Tokamak
Fusion Test Reactor (TFTR) [2].

There is another mechanism for the reduction of ion
ripple loss after the bifurcation. It is possible in some
devices that ion ripple loss is dominated either by the rip-
ple trapping [13] or by the banana drift [14–17]. Ripple
trapping loss mechanism is associated with collisionless
particles that are trapped in the magnetic well created by
the toroidal magnetic field ripple. These particles drift off
the magnetic surface and cause local particle loss. The
banana drift loss mechanism results from the particles
that are trapped in the toroidal magnetic well. Because
© 1999 The American Physical Society
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toroidal magnetic field ripple breaks toroidal symmetry,
the bounce trajectory of these particles is not closed. This
also leads to local particle loss. Both of these loss mecha-
nisms are present in collisionless rippled tokamaks. As
ion temperature increases, ion ripple loss could increase
first which drives bifurcation of Er and then reduces to
relax Er if the effective collision frequency is, at the
beginning, larger than the E 3 B drift frequency of the
ripple trapped ions or banana drifting ions and then later
becomes smaller than the drift frequency. For TFTR
plasma parameters, this mechanism may not be appli-
cable. However, it could be operative in other devices.

We emphasize that the details in determining Er may
vary from device to device. However, extended neoclas-
sical theory that takes the details of the experimental op-
eration into account should be able to determine Er with
reasonable accuracy [4,18].

For simplicity, we assume only that poloidal Mach
number due to E 3 B rotation is of the order of the
ion thermal speed, i.e., MpE � cEr��Bpyti� � 1 where
c is the speed of light, Bp is the poloidal magnetic field
strength, and yti is the ion thermal speed. The Mach
number of the poloidal flow Vu is assumed to be less
than unity, i.e., Mpu � VuB��Bpyti� , 1 where B � jBj.
With this assumption the plasma compressibility effects,
such as shock formation, can be neglected. It has been
demonstrated that qualitative bifurcation behavior is not
affected by the compressibility effects. Because Mpu ,

1, the convective V ? =V term in the fluid momentum
can be neglected. Here, V is the plasma flow velocity.
We note that the compressibility effects that result from
VuB��Bpyti� � 1 are intrinsically nonlinear phenomena
of the nondissipative momentum equation and cannot be
correctly described by the solution of the drift kinetic
equation.
The steady toroidal and poloidal momentum balance
equations are [12]

�Bt ? = ? SaPa� � �Bt ? SaSma� , (1)

�Bp ? = ? SaPa� � 0 , (2)

where Bt is the toroidal magnetic field, Pa is the viscous
tensor of species a, Sma is the momentum source, and
the angular brackets denote flux surface average. For
simplicity, we neglect the toroidal momentum source term
in Eq. (1).

For the plasma parameters in current devices, the im-
portant ripple loss mechanisms are ripple trapping, ba-
nana drift, and collisionless ripple plateau [19]. Because
the leading order perturbed particle distribution func-
tion for these loss mechanisms has no variation along
the magnetic line, �Bp ? === ? Pa� � 2�Bt ? === ? Pa� �
2�eaBpBGa

r �c�, where Ga
r is the ripple induced flux and

ea is charge [20]. The ripple trapping flux for species a
is [19]
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where a � e��Nqd�, e � r�R, r is the minor radius, R
is the major radius, N is the number of the toroidal
magnetic field coils, d is the ripple well depth, na is the
collision frequency, pa is the plasma pressure, Ta is the
temperature, na is the plasma density, and prime denotes
d�dr. Note that to obtain Eq. (3) we have assumed
a . 1. The banana drift flux is [19]
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where Q̃ � �1.5d lnq�d lnr 1 0.7�, rpa is the poloidal
gyroradius, yta �

p
2Ta�Ma is the thermal speed,

Ma is the mass, Wpa�Ta � �n�aN2q2�1�2, and
n�a � �naRq�ytae3�2�. The collisionless ripple plateau
flux is [19]
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where xa
Rp � �3

p
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5
2 �. We are interested in

plasmas that consist of thermal ions �a � i�, fast ions
�a � H�, and thermal electrons �a � e�. For each of
these species, there is a corresponding Ga

t , G
a
b , and
Ga
rp . During the bifurcation and relaxation processes, ion

temperatures, ion densities, and their gradients evolve.
These quantities become part of the controlling parame-
ters in the ERS mode transition.

The nonlinear resonant plasma viscosity due to banana
and circulating particles is [21]

�B ? = ? Pa�n � naMaB2

µ
m1aUua 1

2
5

m2a
qua

ra

∂
,

(6)

where Uua � �yta�B� �Vl�yta 2 cEr��Bpyta� 1

cP0
a��naeaytaBp�� and qua�pa � �yta�B� �ql��payta� 1

5
2 cTa��eaytaBp��. Because Vke 	 Vki ø yte and
cEr��Bpyte� ø 1, electron viscosity is not affected
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in the regime where cEr��Bpyti� � 1, and standard
electron viscosity coefficients apply. The ion non-
linear resonant viscosity coefficients in the banana
regime are �kb1, kb2� �

R
`
jUpm j

dx x4e2x2
KB�1, x2�,

and in the plateau-Pfirsch-Schlüter regime they
are �kps1, kps2� �

R`
0 dx x4e2x2

Kps�1, x2�, where Kps �
�nie

2�2
p
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relaxation frequency, KB � 1.46
p
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viscous coefficients are m1a � k
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A dimensionless nonlinear equation for Mp �
2cEr��Bpyti� can be derived by substituting Eqs. (3)–
(6) into Eq. (2) to obtain
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where B � �c��eBpyti�� �p0
e�ne 1 m2eT 0

e�m1e�, cpa �
cp0

a��najeajBpyta�, and cTa � cT 0
a��najeajBpyta� [23].

The nonlinearity that is responsible for the bifurcation
is in m1i which has a local maximum at a certain value
of Upm. Because parallel flow is usually subsonic, i.e.,
jVk�yti j ø 1, we neglect the difference between Upm and
Mp . This approximation decouples parallel flow Vk and
radial electric field. Equation (7) becomes approximately
a nonlinear equation for Er or Mp . In general, of
course, we need to solve coupled equations for Vk

and Mp .
Equation (7) is solved numerically by plotting the left-

and right-hand sides of it versus Upm. The solutions
are the intersections of these two curves. We use the
ERS-mode-like parameters: B � 3 T, R � 2.6 m, a �
0.8 m, e � 0.1, N � 20, q � 2.5, and d � 1.3 3 1023.
The bifurcation process is demonstrated in Fig. 1. The
gradient parameters are fixed to be cTe � cpe � 0. B �
�0.85 1 �m2e�m1e�0.85�, cpi � 0.85, cTi � 0.85, cpH �
2.0, and cTH � 0. The L-mode solution is described by
the intersection of the solid curve [the left side of Eq. (7)]
and the solid line with crosses [the right side of Eq. (7)]
for 4 keV ions as shown in Fig. 1. When the hot particle
density increases to 2.4 3 1012 cm23, which is 10% of
the thermal density, there are multiple solutions as can be
seen from the intersections between the solid curve and
the solid line with squares in Fig. 1. The solution in the
middle is unstable. The solution with the largest value of
Upm is the ERS-mode solution. When ion temperature
increases to 6 keV, only the ERS-mode solution exists
as indicated by the intersection between the dotted curve
and the dotted line. Once in the ERS state, particle
confinement improves because turbulence fluctuations are
suppressed by the gradients of E 3 B and diamagnetic
angular velocity, and thermal particle density increases.
The increased thermal particle density tends to reduce
neutral particle penetration and, therefore, hot particle
density. When the hot particle density decreases from
2.4 3 1012 cm23 to 1.2 3 1012 cm23 (solid line), and
finally to zero (dotted line), the radial electric field relaxes,
as shown in Fig. 2. Note also in the relaxation process
there is no back bifurcation. This is because the slope of
the nonlinear viscosity in the large Upm region changes
in the higher ion temperature regime. Interestingly, no
bifurcation process is observed in TFTR in the relaxation
phase either.

The time scale involved in the bifurcation can be
crudely estimated from the characteristic damping fre-
quency of the equation and the rate of the change of the
control parameters, i.e., Ti in our example. The charac-
teristic poloidal flow damping frequency is of the order
of nii�ex [24–26]. Here, x is a number between 0 to
1. The rate of change of the control parameters depends
on the heating rate. If the heating rate is extremely slow
so that ion temperature approaches the critical value adia-
batically, the bifurcation time is at first of the order the
linear damping rate, i.e., �nii�ex�21 and then, as Ti ap-
proaches the critical value, the time scale slows down.

FIG. 1. An example of the bifurcation processes. The L-mode
solution is the intersection of the solid curve and solid line with
crosses for 4 keV ions. As hot particle density increases to
2.4 3 1012 cm23, there are multiple solutions, as indicated by
the intersections of the solid curve and solid line with squares.
The solution in the middle is unstable. The new stable solution
is the ERS-mode solution. When ion temperature increases to
6 keV, only the ERS-mode solution exists, as indicated by the
intersection between the dotted curve and the dotted line.
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FIG. 2. An example of the relaxation processes. As the hot
particle density decreases after the bifurcation from 2.5 3
1012 cm23 to 1.2 3 1012 cm23 (solid line), and finally to zero
(dotted line), the value of Er decreases to a L-mode-like value.

This is the well-known critical slowing down phenome-
non [27,28]. However, if Ti changes at a rate faster
than the critical slowing down rate, the critical slowing
down rate will not be observed. The bifurcation rate
is then controlled by �nii�ex�21, nonlinearity of the
system, and the heating rate. Note that �nii�ex�21 in
the parameters of interest is about 20 ms for x � 0, well
within the experimentally observed time scale in TFTR
which is about 20–40 ms [10]. The bifurcation time
scale is therefore in good agreement with experimental
observations.

The relaxation time scale is of the order of the transport
time scale to allow plasma density to build up. This is
again consistent with the observation.

The theory presented here requires a value of the
toroidal magnetic field ripple strength of the order of
1023. In the NCS-mode plasmas [9], ripple strength is
said to be much smaller than this value. It is difficult in
NCS plasmas to observe the ERS-mode-like bifurcation.

We emphasize that the scenario employed to demon-
strate the bifurcation and relaxation processes shown in
Figs. 1 and 2 is not unique. One could, for example, let
gradient parameters cpa and cpT evolve during the bifur-
cation and the relaxation processes as in the experiments.
Here, we are interested only in demonstrating the funda-
mental physics mechanism. The detailed time-dependent
transport simulation will be presented later.

In conclusion, we have demonstrated a bifurcation
and relaxation mechanism for the radial electric field
with ERS-like plasma parameters by including the ripple
loss of both thermal and hot particles. Hot particle
ripple loss assists bifurcation. After bifurcation, the hot
particle density reduces due to improved confinement,
and Er relaxes. During the relaxation process, no back
bifurcation is observed in the regime of interest. This
mechanism could be responsible for the evolution of Er

observed in TFTR ERS mode.
The authors thank R. E. Bell and R. Nazikian for useful
discussions.
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