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Suppression of the Kondo Effect in a Quantum Dot by External Irradiation
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We demonstrate that external irradiation introduces decoherence in the spin states of a quantu
This effect cuts off the Kondo anomaly in conductance even at zero temperature. We evalua
dependence of the dc conductance in the Kondo regime on the power of the irradiation, this depen
being determined by the decoherence.
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The Kondo effect has recently drawn considerable
tention in connection with the experiments on quantu
dots [1–3]. Because of the Kondo effect, the temper
ture dependence of the linear conductance across a
becomes nonmonotonous: Upon lowering the tempe
ture, the conductance first drops due to the conventio
Coulomb blockade, but below certain temperature it sta
growing again [1,2]. The increase of the conductance
associated with the many-body resonance formed at
Fermi energy. This resonance manifests itself as a pe
in the differential conductanceG�V � at V � 0 (zero-bias
anomaly) [1–5]. In a magnetic field, the resonant pe
in the density of states and therefore the zero-bias peak
G�V � are split in two; the interpeak spacing is proportion
to the Zeeman energy of the localized spin [1–3,5]. The
results are similar to the effects considered previously
the context of tunneling through junctions carrying Kond
impurities [6].

Quantum dot devices are highly controllable, and c
be operated in regimes inaccessible in the conventio
magnetic impurity systems, that were used previously f
studying the Kondo effect. Kondo anomaly is a manife
tation of a quantum-coherent many-body state. Irradiati
of a quantum dot with an ac field offers a new, clever wa
of affecting its dynamics, which enables one to study t
Kondo anomaly in essentially nonequilibrium condition
The anomaly modified by the irradiation can be inves
gated by the measurements of the dcI-V characteristics.

Despite a considerable amount of work [7–11], th
physical picture of the influence of irradiation on th
Kondo conductance still needs clarification. Nordland
et al. [9] have conjectured that the result of irradiation
qualitatively different in two frequency domains of the a
field: At sufficiently high frequency, irradiation may caus
ionization of the quantum dot; loss of the localized sp
leads to a suppression of the Kondo anomaly inG�V �. At
frequencies below the ionization threshold, irradiation i
duces satellite peaks [7–10] in the differential conductan
ateV � nh̄v, wherev is the frequency of the irradiation.
The Kondo effect in these conditions, according to [10
is not suppressed. At zero temperature, it is “redistribute
between the usual equilibrium Kondo peak ateV � 0, and
its satellites [10]: The zero-bias conductance departs fr
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the unitary limit, and the satellite peaks appear at its e
pense; this departure is weak as long as the amplitude
ac modulation of the dot’s energyeVv is small.

In this paper we pinpoint the principal effect of the irra
diation on the Kondo anomaly. This effect consists in th
irradiation-induced decoherence of the localized spin sta
Contrary to the picture outlined in the previous paragrap
the decoherence occurs even if the irradiation is not ab
to ionize the dot. We find the dominant mechanism of d
coherence at the frequencies of ac field below the ioniz
tion threshold. This mechanism, “spin-flip cotunneling,
leads to a significant deviation of the linear conductan
from the unitary limit. Upon the increase of the ac fiel
frequency to the ionization threshold, there is a crossov
between the decoherence caused by spin-flip cotunnel
and by dot ionization. However, the variation of the con
ductance in this crossover region is parametrically sma
Starting from fairly low frequencies, the suppression o
the Kondo conductance by decoherence is more import
than the redistribution of the conductance over the hig
frequency satellites.

The system we study is a quantum dot attached to tw
leads by high-resistance junctions so that the charge of
dot is nearly quantized. We describe this system by t
Anderson impurity Hamiltonian

Ĥ �
X

k,s,a

�jk 1 eVa�cy
ksacksa

1
X

k,s,a

ya�cy
ksads 1 dy

scksa�

1
X
s

�2Ed 1 eVv cosvt�dy
sds 1 Ud

y
" d"d

y
# d# ;

(1a)

VL,R � 6
1
2

V , Ga � 2pny2
a . (1b)

Here the first two terms describe noninteracting electro
in the two leads (a � L, R), and tunneling of free elec-
trons between the dot and the leads, respectively;
assume tunneling matrix elementsya are real, without re-
ducing the generality of the Hamiltonian. The dot is de
scribed by the third and fourth terms of the Hamiltonian
Ed and U 2 Ed are the ionization and the electron
© 1999 The American Physical Society
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addition energy, respectively. The tunneling matrix ele-
ments ya are related to the widths Ga by Eq. (1b), where
n is the density of states in a lead. The external irradiation
is applied to the gate, which is coupled to the dot capaci-
tively, and modulates the energy of the electron localized
in the dot. We assume that the leads are dc biased, ne-
glecting the possible “ leakage” of the irradiating ac field
to the leads. The generalization onto the case of nonzero
ac bias is straightforward.

In the present paper we consider the dot in the Kondo
regime, U 2 Ed , Ed ¿ GL,R . We assume the applied
dc and ac fields are small, eV , eVv ø Ed , U 2 Ed . We
are primarily interested in the irradiation effects in the
domain v , Ed , U 2 Ed , where neither dot ionization
nor the photon-assisted tunneling [12] occur. Under such
conditions, one can make the Schrieffer-Wolff transforma-
tion [13] (more precisely, its modification for the time-
dependent case) to convert the Hamiltonian (1a) to the
Kondo form:

ĤK � Ĥ0 1 Ĥt , Ĥ0 �
X

k,s,a

jkc
y
ksacksa , (2)

Ĥt �
X
k,s,a

k0 ,s0 ,a0

Iaa0�t� � 1
4 dss0 1 Ŝjs

j
ss0�cy

ksack0s0a0 ,

where ŝ and Ŝ are the spin operators of the delocalized
electrons in the leads and of the electron on the isolated
level, respectively; we assume summation over the repeat-
ing indices j � x, y, z. The applied bias is accounted for
by the time dependence of the coupling term Ĥt . The
Hamiltonian (2) operates within the band 2Ed , jk ,

U 2 Ed ; see Ref. [14]. The coupling constants J are
given by
Jaa0�t� �

p
GaGa0

4pn
exp

∑
ie
h̄

�Va 2 Va0�t
∏ X

n1,n2

Jn1

µ
eVv

h̄v

∂
Jn2

µ
eVv

h̄v

∂
exp�i�n1 2 n2�vt�

3

∑
1

Ed 1 n1h̄v
1

1
U 2 Ed 1 n1h̄v

1
1

Ed 1 n2h̄v
1

1
U 2 Ed 1 n2h̄v

∏
, (3)
where Jn�x� are the Bessel functions.
To calculate the differential dc conductance G�V �, we

employ the nonequilibrium Keldysh technique in the time
representation. In this formalism

G�V � �
≠

≠V
�S�2`, 0�ÎS�0, 2`��0 , (4)

where Î is the current operator, and S�t2, t1� is the
evolution matrix determined by Ĥt .

In the perturbation expansion of (4) in powers of
the coupling constant Jaa0 , the logarithmic divergences
appear starting from the terms of the third order in Jaa0 .
A representative term has the following structure:

e2

p h̄
�J �0�

LR �2J
�0�
RR

h̄3

Z 0

2`
dt1

Z 0

t1

dt2�Ŝj�0�Ŝk�t1�Ŝl�t2��´jkl

3 �t1 cos�eVt1�h̄� 1 t2 cos�eVt2�h̄��

3
X

k1,k2,k3

Gk1�2t2�Gk2�t2 2 t1�Gk3 �t1� , (5)

where

J
�0�
aa0 �

p
GaGa0

pnẼd
, Ẽd �

�U 2 Ed�Ed

U
,

Gk�t� and Ḡk�t� are the time-ordered and anti-time-
ordered Green functions of free electrons in the leads,
and ´jkl is the antisymmetric unit tensor. This and other
terms of the same structure yield the Kondo divergency
in the conductance. If there is no spin decoherence, the
averages �Ŝj�t1�Ŝk�t2�Ŝl�t3�� are independent on time and
equal �i�4�´jkl . The ac field introduces decoherence in
the dynamics of the impurity spin, which results in a
decay of the correlation function:
�Ŝj�t1�Ŝk�t2�Ŝl�t3�� � �i�4�´jkl exp�2tmax�t� ,

tmax � max	jt1 2 t2j, jt2 2 t3j, jt1 2 t3j
 .
(6)

After summing over the electron states ki , performing the
integration over t2 in Eq. (5), and adding up all the cubic
in J �0� terms, we arrive at

G�3��V � � 12p2 e2

p h̄
n3�J �0�

LR �2�J �0�
RR 1 J

�0�
LL �

3
Z 0

2`
dt

�2t� cos�eVt�h̄� exp�2jtj�t�
sinh2�pTt�h̄� 1 �T�D0�2

3

µ
pT
h̄

∂2

. (7)

The effective bandwidth here is D0 �
p

Ed�U 2 Ed�
[14]. In the absence of spin decoherence, the integral in
Eq. (7) equals ln�D0�max	T , eV 
�, and diverges logarith-
mically at low temperature and bias, signaling the Kondo
anomaly. The leading effect of the irradiation is in cut-
ting off this divergency. The decay of the spin correlation
function (6) makes G�3��V � finite even at T , V ! 0. We
will show that the spin decoherence by external irradia-
tion does not require ionization of the impurity level, and
therefore exists at arbitrary low frequencies of the applied
ac field. The suppressing effect of the irradiation on the
Kondo conductance, G�3� ~ �J �0��3 ln�D0t�h̄�, is not ana-
lytic in the intensity of the ac field, and cannot be obtained
by a finite-order perturbation theory.

In the absence of the dot ionization, the decoherence
rate can be calculated with the help of the Hamiltonian
(2), (3). In the case of weak modulation, eVv , h̄v,
it is sufficient to account for the single-photon processes
only. The part of Hamiltonian given by Eqs. (2) and (3)
385
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responsible for such processes corresponds to four terms
labeled by n1 � 0, n2 � 61, and n1 � 61, n2 � 0 in
the sum (3), and is given by

Ĥ
�1�
t � 2

eVv cosvt
2Ẽd

X
k,s,a

k0 ,s0 ,a0

J
�0�
aa0 Ŝjs

j
ss0c

y
ksack0s0a0 . (8)

In deriving Eq. (8), we expanded the Bessel functions of
Eq. (3) up to the first order in eVv�h̄v.

The process of spin-flip cotunneling (spin flip without
ionization of the dot) induced by the irradiation is shown
schematically in Fig. 1A. In terms of the Kondo Hamil-
tonian (2), an electron, which interacts with the dot spin,
absorbs a photon and hops to a state above the Fermi level,
while the spin of the dot flips. Within the lowest-order per-
turbation theory, the rate of this process can be calculated
with the Fermi golden rule applied to Hamiltonian (8):

h̄
t

�
1

2p
h̄v

∑
GL 1 GR

Ẽd

∏2 ∑
eVv

Ẽd

∏2

. (9)

The spin-flip cotunneling persists at arbitrary low frequen-
cies, leading to the decoherence of the dot spin state.

As we pointed out earlier, the Kondo anomaly is a
manifestation of a quantum-coherent many-body state.
The loss of spin coherence suppresses the Kondo anom-
aly. At T , V ! 0, it is the spin decoherence time t that
cuts off the logarithmic divergency in the integral (7).
After the first logarithmic correction (7) to the conduc-
tance is found, we can proceed with the derivation of the
renormalization group equation, which yields the conduc-
tance G in the leading logarithm approximation. For the
present nonequilibrium problem, we have to modify the
“poor man’s” technique [15] in order to apply it directly
to G, rather than to the scattering amplitudes. This need
emerges from the kinetic nature of the problem at hand.
The resulting formula for the peak conductance, which is
valid in the domain h̄�t * TK , can be cast in the form

Gpeak �
e2

p h̄
4GLGR

�GL 1 GR�2

3p2

8

∑
ln

h̄
tTK

∏22

. (10)

The width of the conductance peak is V � � h̄�et. Here
the Kondo temperature TK is defined as [14]

TK � g

s
�GL 1 GR�U

p
exp

∑
2

pẼd

2�GL 1 GR�

∏
, (11)

with g � 1.
At h̄�t ¿ TK , one can expand Eq. (10) into the series

of powers of ��GL 1 GR��Ẽd� ln�D0t�h̄�. The zero-order
term of the series is the conductance calculated in the
Born approximation, and the next term yields the lowest
order Kondo correction given by Eq. (7). At h̄�t & TK ,
386
FIG. 1. Spin-flip cotunneling: the coherence of the spin state
of the dot can be lost when an electron interacting with it hops
from a state below the Fermi level to a state above the Fermi
level. Additional energy, needed for such a transition, can be
taken either from the ac field or from the applied bias. The
figure shows the initial �i� and final � f� states of the system for
the decoherence processes driven by an ac field (A) and by a
finite bias (B).

we expect, in the spirit of the renormalizability of the
Kondo problem, that the �lnx�22 function in Eq. (10) can
be replaced by some universal function F �x�. In the
limit of no irradiation, F �0� � 8�3p2 (unitary limit of
the Kondo scattering).

As the frequency v of the ac field grows, the rate of
the decoherence processes increases, and the height of the
zero bias conductance peak Gpeak drops. The dependence
of Gpeak on v can be found from Eq. (10). For a rela-
tively weak ac field, eVv ø Ẽd , the decoherence time t

is given by Eq. (9) for the frequencies below the ioniza-
tion threshold ´i , and by h̄�t � �G�2� �eVv�Ẽd�2 above
the threshold. One can easily check that the crossover
between these two regimes leads only to parametrically
small relative variations in the peak conductance, as v in-
creases, say, from ´i�2 to 2´i .

Another effect of external irradiation on the differential
conductance G�V � is in producing satellite peaks at eV �
nh̄v. If an external ac field is applied, then, at eV �
nh̄v, a tunneling electron can hop from a state at the
Fermi level in one lead to a state at the Fermi level in
the other lead, emitting or absorbing n photons. Thus at
finite bias the external irradiation can effectively put a tun-
neling electron into zero-bias conditions, and the Kondo
anomaly in the conductance is revived. The height of these
peaks can be calculated from the formula (4) similarly to
Eq. (7). Here we give the results for the first satellite peak.
At low enough irradiation level, eVv , h̄v, it is suffi-
cient to consider only one-photon processes, accounted
for by the Hamiltonian (8). The resulting correction
to the conductance at ejV j close to h̄v has the form
G
�3�
sat�V � � 3p2 e2

p h̄
n3�J �0�

LR �2�J �0�
RR 1 J

�0�
LL �

∑
eVv

Ẽd

∏2 Z 0

2`
dt �2t� exp�2jtj�tsat�

3

µ
pT
h̄

∂2 cos��eV�h̄ 1 v�t� 1 cos��eV�h̄ 2 v�t�
sinh2�pTt�h̄� 1 �T�D0�2 . (12)
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When eV fi 6h̄v, the cosine functions cut off the log-
arithmic divergences. However, when eV ! 6h̄v, one
of the two cosine terms becomes essentially constant
[cf. Eq. (7) at V ! 0], and the differential conductance
has a peak again. At T ! 0, the height of the conductance
peak is determined by the spin decoherence rate h̄�tsat.
We must mention that tsat may be significantly shorter than
t given by Eq. (9). The time t characterizes the spin deco-
herence at zero bias, whereas the satellite corresponds to a
finite bias eV � 6h̄v. In this case, the spin decoherence
occurs mostly due to the tunneling of electrons through the
dot (see Fig. 1B, and also [5]). The rate of this process is
given by

h̄
tsat

�
1

2p
h̄v

GLGR

Ẽ2
d

. (13)

Equations (12) and (13) yield the formula for the satellite
peak shape, provided h̄�tsat ¿ TK . The shape of the
satellite peak in the conductance is given by

Gsat�eV 2 h̄v� �
3
p

e2

p h̄
GLGR

�GL 1 GR�2

"
eVv

Ẽd

#2

3

∑
GL 1 GR

Ẽd

∏3

3 ln
D0p

�h̄�tsat�2 1 �eV 2 h̄v�2
,

(14)

and its width is of the order of h̄�etsat.
At T ! 0, i.e., when the unitary limit of tunneling

is approached, the formation of the satellite peaks is
best viewed as a redistribution of the Kondo anomaly
between the elastic tunneling processes and the tunneling
with absorption/emission of photons [16]. This transfer
of spectral weight reduces the height of the zero-bias
conductance peak [10]. To compare this mechanism with
the spin-flip cotunneling, we note that the redistribution of
the Kondo anomaly results from the changes in the single-
particle dynamics. To produce a significant deviation
of the zero-bias conductance from the unitary limit in
this way, one therefore needs to apply an ac field with
amplitude

Vv �
Ẽd

e
.

The spin-flip cotunneling directly affects the many-
body state which produces the Kondo anomaly. Because
of the fragility of this many-body state, it can be destroyed
by a relatively weak ac field; the Kondo effect is
suppressed already at

h̄
t�Vv�

* TK ,

with t�Vv� given by Eq. (9). Comparing these two
conditions on Vv , we find that the decoherence yields the
leading effect of ac field on the zero-bias dc conductance
starting from parametrically small frequencies, h̄v .

TK �Ẽd�G�2 of the ac field.
In conclusion, we have demonstrated that the irradiation
suppresses the dc Kondo conductance across a quantum
dot. This suppression is an essentially nonperturbative
phenomenon. Irradiation brings decoherence into the
spin dynamics of the dot, even if the photon energy
is insufficient to ionize the dot. Finite lifetime of the
Kondo resonance, resulting from the irradiation-induced
decoherence, is the main cause of the suppression of the
Kondo effect. For suppression to occur, it is sufficient
that the spin decoherence time t, given by Eq. (9), is
shorter than characteristic scale h̄�TK defined by the
Kondo temperature TK [Eq. (11)]. The spin decoherence
leads to saturation of the low-temperature conductance at
t & h̄�T . The condition t & h̄�TK is readily satisfied
at a relatively small amplitude of the ac field, when the
redistribution of the differential conductance from the
zero-bias peak to the satellite peaks is negligible.
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