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The Helicoid versus the Catenoid: Geometrically Induced Bifurcations
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The minimal surfaces bounded by a frame formed of a double helix and two horizontal rods are
studied. The vibration equation shows that the helicoid is the stable surface when its winding number
is small. The catenoid is locally isometric to the helicoid so that their vibration spectra are strongly
related. While the catenoid is known to undergo a discontinuous transition to two disks, the helicoid
is shown to become unstable through a continuous transition to a ribbon-shaped surface obtained
experimentally, numerically, and analytically in the limit of infinite height. The normal forms of the
bifurcations confirm the analysis.
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Minimal surfaces are found in many fields of physics
which range from soap films [1], lipid-water solutions
[2,3], diblock copolymers [4], crystallography [5,6], pro-
tein structures [6,7], to smectic-A [8], smectic-Q [9], or
blue phases [10]. These studies are often morphological
and most of the time are not concerned with the stabil-
ity of the surfaces, although morphological transitions can
result from the lack of stability. The helicoid and the
catenoid are conjugate minimal surfaces through the Bon-
net transformation. They are found in protein structures
[6,7]: the b-sheets may lie on a catenoid or a helicoid
depending on the protein conformation. The helicoid ap-
pears in macromolecules such as DNA or in screw dislo-
cations of smectic A [8]. The catenoid, which has been
widely investigated, is the minimal surface bounded by
two coaxial rings. When the distance between the rings is
increased, the catenoid disappears and is replaced by two
disks [11] through a discontinuous transition. Recently,
its vibration spectrum has been experimentally studied
with smectic films in [12] and it has been shown to be
strongly related to the helicoid vibration spectrum [13].
A natural question comes about the transitions that the he-
licoid might undergo when varying its dimensions.

In this Letter, we study the minimal surfaces ly-
ing on a frame consisting of a double helix of ver-
tical axis, r6�s� � �6r cosf, 6r sinf, p��2p�f�, f [
�0, f0�, and two horizontal rods r�t� � �rt, 0, 0�, t [
�21, 1� and r�t� � �rt cosf0, rt sinf0,p��2p�f0�, t [
�21, 1� (see Fig. 1). When varying the frame, a continu-
ous transition to a ribbon-shaped surface occurs, contrary
to the catenoid case. As pointed out in [14], continuous
families of minimal surfaces are useful for complete mor-
phological studies. However, when a bounding frame is
considered, it is difficult to find such families. In fact, the
plateau problem (finding the minimal surfaces bounded by
a given frame) is mathematically intractable in general.

Let us first derive the vibration equation of a minimal
surface, and introduce some useful notation (see [15]). To
define a surface without ambiguity, one needs to know
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two tensors called the fundamental tensors I and II:

aab � r,ar,b and dab � r,abN , (1)

N being the normal of the surface at a point r. Roughly
speaking, aab gives the direction of the two tangents,
while the second tensor is related to their derivatives with
respect to the chosen coordinates a and b. If fluctuations
of the surface occur (spontaneous ones or forced exterior
ones), each point is displaced as follows:

r0�u, y, t� � r�u, y� 1 w�u, y, t�N�u, y� . (2)

We ignore the tangential displacement, which means sim-
ply a reparametrization of the surface without conse-
quence for the balance of energy. The perturbed area
of the surface element dS � �det�aab��1�2 du dy is then
changed into (see [16])

dS0 �

µ
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1
2
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2 Kw�d21�abDawDbw

2 Kw2DawDaw 2
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�DawDaw�2

∂
dS . (3)

In our case, since the surface is minimal, the mean
curvature H vanishes, so that there is no linear term in

FIG. 1. Experimental and numerical helicoid for an aspect
ratio H�D � 2 and a winding number f0�p � 2.
© 1999 The American Physical Society
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Eq. (3), while the Gaussian curvature K remains negative
everywhere (K � 0 in the planar case). For the vibration
equation, the second order is enough but one needs to
keep the fourth order terms for the bifurcation analysis.
The capillary energy Ecap is written as

Ecap � g
Z

dS0, (4)

where g is the surface tension, while the kinetic energy
Ekin is simply

Ekin �
rh
2

Z
�≠tw�2 dS , (5)

with r the mass density and h the thickness of the film.
With a forced harmonic excitation in cos√t, one gets

the eigenvalue vibration equation for an arbitrary minimal
surface µ

DaDa 2 2K 1
rh
g

√2

∂
w � 0 , (6)

with the condition that w must vanish on the frame
which supports the membrane. This two-dimensional
Schrödinger-like equation depends only on the metric
of the surface (so on the first tensor) as the curvilinear
Laplacian and the Gaussian curvature do. So if two
minimal surfaces have the same metric (and differ only by
the second fundamental tensor), their eigenvalue spectra
are related if they rest on “similar contours.” In fact,
the Weierstrass construction gives an infinite set of
minimal but also isometric surfaces (each of them being
parametrized by a complex number expit), from two
analytical functions of v � u 1 if. So from now
on, we choose as coordinates a and b the conformal
coordinates u and f. One of the most famous families is
probably the heltocat family which includes as particular
cases both the catenoid and the helicoid. In a previous
paper [13], we have studied the isospectrality of these
surfaces but now we focus on the stability analysis.

The surface is unstable if √2 , 0. The threshold of
instability of an arbitrary minimal surface is then given
by the existence of a solution to Eq. (6) with √ � 0
and the condition that w must vanish on the frame.
A quick analysis of Eq. (6) with √ � 0 suggests that
the helicoid threshold is simply deduced from the well-
known catenoid threshold. But, of course, this provides
no information on the final shape above the bifurcation
threshold and on the nature of the transition, which is
subcritical for the catenoid.

As a consequence, other physical effects than capillarity
can intervene at the transition such as hydrodynamics
which lead to a finite-time singularity [11]. Our objective
here is more modest as we take into account only
capillarity. Since the helicoid is a surface which occurs
in a wide range of physics going from soft matter
physics up to macromolecules in biology, we think it
important to understand also its destabilization properties
as we increase its height at constant radius. Structural
transformations experienced by macromolecules might be
explained simply by stability arguments.
In conformal coordinates, the representation of the
heltocat family is

rt�f, u� � A� cost cosf coshu 1 sint sinf sinhu,

cost sinf coshu 2 sint cosf sinhu,

u cost 1 f sint� , (7)

where A is some length. By definition, all these surfaces
which include as a particular case the catenoid for t � 0
and the helicoid for t � p�2 have the same metric and
the same Gaussian curvature. Moreover, in this case,
these quantities depend only on the u variable which is,
of course, a rather exceptional simplifying property for
a minimal surface. Note that f varies between 0 and
2p for a complete catenoid but can vary between 0 and
f0 for the helicoid. As for u, we choose 2u0 , u ,

1u0. Finally, after a Fourier decomposition in f, Eq. (6)
reduces to the following one-dimensional equation

w00 1
2

cosh2u
w � l2w . (8)

For the catenoid, since we have periodic boundary condi-
tions, l � 0, 1, 2, . . . . But for the helicoid, l � np�f0
with n � 1, 2, 3, . . . .

In the catenoid case with l � 0, an analytical solution
for w � W�u tanhu 2 1� gives the threshold of stability
uc � 1.199 [solution of w�uc� � 0]. So if H is the
distance between the two rings of diameter D which
support the catenoid, the catenoid shape disappears when
the ratio H�D is larger than �H�D�c � 0.662. Above
this critical value, two disconnected disks are observed
and the bifurcation is subcritical [11].

We now turn our attention to the helicoid surface.
Equation (6) is no more than the Schrödinger equation
with the attractive potential hole of modified Pöschl-Teller
type [17]. The even solution, giving the lowest bound
state, is found in terms of hypergeometric functions,

we�u� � W cosh2uF

µ
2 2 l
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,

1
2

, 2 sinh2u

∂
.

(9)

Not surprisingly, the marginal stability is obtained for a
critical u0 larger than 1.199. For large u0 an asymptotic
analysis of Eq. (9) gives l � 1. For intermediate values
of u0, one can refer to Fig. 2 for the aspect ratio: H�D
as a function of the twist angle f0�p. The domain
of existence of the helicoid follows simply. Consider a
helicoid of height H � Af0 and diameter D � 2A sinhu0
both fixed. When increasing the twist angle f0, the
helicoid becomes unstable.

Remaining at a demonstrative and qualitative level, we
have observed this instability experimentally. Using iron
threads we constructed a frame with two symmetrical
helices with the same vertical axis and closed at both ends
by horizontal rods. We used a soap solution to generate
a film standing on the frame. When the twist angle is
increased, an instability occurs with the destruction of
3837
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FIG. 2. Phase diagram of the helicoid.

the helicoid and the appearance of a new surface (of
ribbon type) which lies on the helices (see Fig. 3). Each
time, there are two possible symmetric ribbons. If we
consider the DNA bases to be on a surface, the A-DNA

FIG. 3. The two ribbon surfaces for an aspect ratio H�D � 2
and a winding number f0�p � 3.
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[18] and the P-DNA [19] are morphologically similar to
the ribbon surface. This simple model based on minimal
surfaces roughly predicts the geometrical aspect ratios
of DNA molecules and their topological changes [20].
When doing the experiment, we observe that the process
is reversible: the bifurcation is supercritical. Decreasing
the twist angle, the initial helicoid is restored.

We do not succeed to find explicitly the ribbon shape
(bifurcated shape) by the Weierstrass construction,
because of the difficulty coming from the boundary con-
ditions at the horizontal rods. So, we use a finite-element
minimization [21] of the capillary energy given the
boundary conditions (the two helices and the two horizon-
tal rods). In the domain predicted by the linear stability,
the helicoid is found as expected. Outside this domain,
the two ribbon surfaces are the stable minimal surfaces
(Fig. 3). Note that the vertical axis lies within the helicoid
while it remains outside the bifurcated surfaces. So the
inner diameter d can be chosen as the order parameter for
the bifurcation (d � 0 for the helicoid), while the control
parameter can be u, f or some aspect ratio. Near the
marginal stability curve, and as expected for a supercritical
bifurcation, d follows the scaling d �

p
l 2 lc if l is

the control parameter.
This analysis can be confirmed by including the non-

linear contributions derived from Eq. (3). For clarity, we
consider only the catenoid or the helicoid with f0 � `,
so that the most unstable mode depends on one variable
u. We compute the capillary and the kinetic energy of
w�u, t� � W�t� �u tanhu 2 1� in the vicinity of the onset
of instability:

Ecap � g

√
a�uc 2 u0�W2 2 g

b
A2 W3 1

c
A2 W4

!
, (10)

Ekin � rhdA2�≠tW�2. (11)

Here a, b, c, d are positive constants. The coefficient
of the second tensor g � dff � A cos�t� is different for
the catenoid (g � A) and the helicoid (g � 0). For the
catenoid, the control parameter is given by the height
over diameter ratio d � �H�D�c 2 H�D � �u0 2 uc�2.
After a proper rescaling of the time t and amplitude W , we
derive the following amplitude equation for the catenoid:
≠ttW � 2

p
d W 2 W2. By the change of function, W �p

d 1 Z, the amplitude equation becomes

≠ttZ � d 2 Z2, (12)

which demonstrates that the catenoid undergoes a
Hamiltonian saddle-node bifurcation. Remember that
if H�D , �H�D�c � 0.662, there are two possible
catenoids bounded by two coaxial rings of diameter
D and distant by H. One is stable and the other is
unstable. The control parameter for the infinite height
helicoid is given by the diameter over pitch ratio e �
D�2pA 2 �D�2pA�c � �sinhu0 2 sinhuc��p � u0 2 uc.
With the rescaling, the equation for the helicoid becomes

≠ttW � eW 2 W3. (13)
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So the helicoid undergoes a pitchfork bifurcation. While
the first tensor is responsible for the stability threshold, the
second tensor is responsible for the nature of the bifurca-
tion. In fact, the complete helicoid separates the space
into two parts symmetrical with respect to the helicoid
axis, so that we expect a symmetrical bifurcation. For the
catenoid the two parts of space are different.

If the height of the double helix is infinite, it turns
out that a simple analytical form of this new ribbon-
like minimal surface can be found among the heltocat
family itself. Let us consider an arbitrary member of
this family St given by Eq. (7) with B replacing A. At
fixed u, rt�f� is a helix which lies on St . Its radius
is B

p
cos2t cosh2u 1 sin2t sinh2u and its pitch is p �

2p sintB. We want to find on St two helices of ra-
dius r � A sinhu0, of pitch 2pA, and symmetrical with
respect to the z axis, so that the frame is the helicoid frame.
The second condition gives A � B sint, while the first and
third conditions give the t value once u0 is known:

tan

µ
n

tant

∂
tant tanhn � 1 , (14)

with sinh2n � sin2t sinh2u0 2 cos2t . (15)

Note that u0 � 1.199 � uc when t � p�2, and so the
surface appears continuously when the helicoid becomes
unstable. Also, u0 ! ` when t ! 0. As given by
Eq. (8), this surface is found to be always stable. But
there may be many minimal surfaces bounded by a given
frame. Comparison with numerical results is necessary,
and shows that the surface we have found is the selected
one: the numerical and theoretical surfaces differ only in
the region where the vertical distance to the horizontal
rods is smaller than the pitch. This difference comes from
boundary effects at the rods.

In conclusion, we have shown that the helicoid under-
goes a supercritical transition to a ribbon-shaped surface.
This minimal surface might be used to construct a new
type of dislocations, as screw dislocations are constructed
from helicoids [8].

We thank Yves Couder, Thomas Garel, and Stéphan
Fauve for fruitful discussions.
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