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Empty Site Models for Heap Formation in Vertically Vibrating Grains
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Heap formations of granular materials in a vertical vibrating bed are studied by a simulation model in
which the effect of decrease in local density due to vibration is modeled by the creation of empty sites
in the bulk. Dynamics of empty sites are introduced to simulate the bulk flow while the surface flow is
modeled by rules similar to the sandpile model. Phenomena such as heap formation and downward and
upward convection modes can be reproduced. Phase diagrams similar to experimental observations can
be constructed. A continuum model based on the empty site dynamics is also proposed. Predictions
from the continuum model compare favorably with experimental observations.

PACS numbers: 45.70.Qj, 47.54.+r, 83.10.Hh, 83.70.Fn
The physics of granular materials has been the subject
of great interest for over two centuries [1]. These granular
materials cannot be easily classified as either solid or liq-
uid since they can sustain shear like a solid up to a point
and also flow like a liquid. A good example is the behav-
ior of sand lying on a vertically vibrating bed. Similar to
the Faraday waves [2] on liquid surfaces, many intrigu-
ing patterns can be generated. One of the most remark-
able phenomena in such a system is the heap formation
[3]. The relevant dimensionless parameter for this prob-
lem is the reduced acceleration amplitude, G � Av2�g
of the bed where g, A, and v are the gravitational accel-
eration, amplitude, and angular frequency of the vibrat-
ing bed, respectively. An originally flat layer of sand
will turn into a heap with a well-defined structure if G

is greater than some critical value Gc. The grains in the
heap are not simply moving up and down vertically, but
a convection roll with grains moving up along the wall
and flows moving down the slope of the heap are also
produced. The convective motion is qualitatively simi-
lar to the convection rolls formed when a fluid is heated
from below [4]. There are many investigations both in
theory [5–8] and experiment [9–11] as well as numerical
simulation [12,13] to investigate the underlying mecha-
nism in a vertically vibrating granular layer. One of the
main issues is to understand the formation mechanism of
heaps and to relate the granular properties with the ob-
served dynamic behaviors such as the convection current.
Friction between the grains and with the wall [14], driving
mechanism, and boundary effects [15,16] all play impor-
tant roles in the convection modes. To understand the ori-
gin of the convection there have been various theoretical
attempts to include voids in the granular dynamics [5,8].
Vertical vibrations create voids which decrease the overall
density and thus allow the rearrangement of grains in the
bulk, providing a mechanism for convection. However,
these models of voids are usually quite complicated and
do not necessarily lead to the formation of heaps. Since
bulk movement alone might not be sufficient to complete
a convection cycle, presumably a surface flow is needed
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as observed in experiments. Also, it is found that inter-
stitial gas is vital for the heap formation. Pak et al. have
established in their experiments [10] that heaping and con-
vection current disappear when there is no interstitial gas.
This last finding suggests that the “voids” in the granular
material are filled with air which might be compressed.
Therefore, any successful heaping model should also in-
clude the effects of the interstitial gas. The sidewalls are
also essential since they confine the grains to flow in a
finite region and the frictional properties of the wall can
affect the convection mode. In this Letter, we report the
results of a new simulation model which is designed to
study the mechanism of heap formations. The simulation
model is based on the well-known sandpile model [17]
which takes care of the surface flow of the granular ma-
terials and has been applied to granular segregation [18].
This simple model can reproduce many of the observed
phenomena such as heap formation, downward, and up-
ward modes of convection. The success of this model
suggests that heap formation is mainly caused by intersti-
tial gas and the sidewalls of the container. Finally, a con-
tinuum model based on the empty site dynamics is also
constructed.

Our model is based on two important observations in vi-
brating bed experiments. The first is that density fluctu-
ations are generated by vibration and convection can be
induced. Second, surface flow is induced by grain topplings
similar to a sandpile. To implement these ideas, we make
use of a sandpile model [17] in which fluctuations in den-
sity can be realized by random creation of empty sites in
the bulk. Since these empty sites will also generate fluc-
tuations in heights, surface flow will be induced and taken
care of automatically by the sandpile rules. However, in
order to generate convection in the bulk, similar to the void
models [5,8], these empty sites will need to follow some
realistic dynamics. Therefore, our simulation consists of
two essential steps. Vacant sites are first created in a sand-
pile, then the system is allowed to relax on the surface by
sandpile rules and by the empty site dynamics in the bulk
to be specified below. Grains of the pile are arranged in a
© 1999 The American Physical Society
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rectangular lattice with height hi in the ith column. To
create density fluctuations, empty sites are created ran-
domly and uniformly in the pile with a probability a. Note
that the empty site has the same size as a grain, as shown
in Fig. 1. After the additions of empty sites, the heights of
the pile will be increased and therefore a can be regarded
as an expansion factor due to vibration. A realistic rule
for these empty sites is to allow them to exchange their
positions with their neighbors such that the empty sites
are moving to regions of lower pressure. The pressure
at an empty site is assumed to be proportional to the num-
ber of grains on top of that site. When the empty site gets
to the top of the pile, it disappears. To be more specific,
the probability of moving up for an empty site is always 1

3
[19], while the probability of moving to the left or right
depends on DhL � h�i� 2 h�i 2 1� and DhR � h�i� 2

h�i 1 1� as follows: If Dh # 0 on both sides [Fig. 1(c)],
the vacant site will not move horizontally. If Dh . 0 on
one side and Dh , 0 on the other [Fig. 1(b)], then the void
can move up or to the Dh . 0 side with equal probabil-
ity of 1

3 . If both Dh are positive, then the probability of
moving to the left or right are given by � 2

3 �DhL��DhL 1

DhR� and � 2
3 �DhR��DhL 1 DhR�, respectively [Fig. 1(a)].

Hard wall boundary conditions such that no grain or vacant
site is allowed to move into the walls are imposed.

The simulation cycle consists of one step of empty site
generation followed by g steps of relaxation. In each
relaxation step, each empty site attempts to exchange with
its neighbor once, and every surface site on the average
is updated by the sandpile rule once. Thus g can also
be interpreted as the toppling rate for the grains. All the
grains can finish their topples before the next vibration if
g is very large. The model has two time scales: one is the
rate of expanding the piles due to vibration, and the other is
the characteristic relaxation time governed by the toppling
rate of the grains. The critical slope D in the sandpile
rule is fixed to be 2 for convenience. Starting with a flat
layer of N grains without any void in a system of width
L, the steady state behavior of the system is monitored for
various values of a and g. We found that for small values
of a, there is no instability in the layer configuration apart
from small random fluctuations on the surface. However,

FIG. 1. Dynamic rules for the empty site. Grains are gray and
voids are white. (a) The void can exchange in three directions;
probability of the right exchange is higher than the left. (b) The
void cannot exchange with the left since the left neighbor pile
is taller. (c) The void has the only possibility for an upward
exchange since both neighbor piles are taller.
when a is larger than some critical value, the originally
flat layer becomes unstable and gives way to new steady
state configurations. Figure 2 shows some representative
steady state configurations of the simulation for different
values of a with g � 10, L � 45, and N � 675 [except
N � 225 in Fig. 2(a)]. These values of parameters are
chosen such that there are both sufficient surface and bulk
flows. Therefore, in all the configurations, the slopes of the
heaps are close to the critical slope, D. Figure 2(a) shows
the formation of a one-sided heap in which a convection
current with grains moving up the wall (upward mode) and
slides moving down the slope can be easily observed by
using tracer grains. Note that the heap does not extend to
the other wall. The horizontal width of the one-sided heap
is not controlled by the system size L, but rather by N and
D such that the heap width l �

p
2N�D. One might think

that l will increase with N until l � L. However, as N is
increased beyond some critical value well before l � L,
the one-sided heap is no longer stable, and an initially
thicker flat layer will turn into a steady downward heap
[Fig. 2(b)] when a is larger than some critical value. With
N fixed, side peaks will develop at the expenses of the
central peak when a is increased as shown in Fig. 2(c).
Further increase in a will result in a prominent upward
heap [Fig. 2(d)]. The transition from downward to upward
heap has also been observed in recent experiments [11] as
G increases.

It is obvious that the two parameters g and a pro-
duce competing effects. A large g means faster relaxation
of height fluctuations deviating from the critical slopes—
more time for the empty site to escape and therefore sup-
press large fluctuations. Since fluctuations in our system
are produced by the generation of empty sites, a large pro-
duction rate a will enhance fluctuations. The competition
between these two effects produces a phase diagram of
different steady state configurations, as shown in Fig. 3.

FIG. 2. Steady state configurations with an initially flat layer.
L � 45 and g � 10. Black arrows show the schematic
convection directions. (a) N � 225 and a � 0.1. N � 675
for (b), (c), and (d) with a � 0.05, 0.1, and 0.3, respectively.
Downward mode of heap in (b) and upward mode in (d).
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The layer remains flat when a is smaller than 0.01. For
a given g, when a increases gradually, the phenomena
of heaping will occur. But if a is too large, the heaping
state will disappear, which corresponds to the strongly flu-
idized phase in real experiments. In this aspect, a plays a
very similar role to G in experiments. Furthermore, wall
effects are also investigated by allowing the probability of
creating voids for the two piles next to the walls (denoted
by aW ) to be different from that of the bulk (a). A large
wall friction suppresses the density fluctuations near the
wall and corresponds to a small value of aW . Our simu-
lation results [20] show that for fixed a and g the steady
heap changes from the downward mode to the upward
mode as aW increases (wall friction decreases), which
agrees with the experimental observation that the convec-
tion mode reverses its direction, from downward mode to
upward mode, when the container wall is changed from
a rough to a smooth one [21]. The effective wall fric-
tion can be changed experimentally by canting the vertical
sidewalls outward. When the canting angle is increased,
which corresponds to a decrease in effective wall friction,
a similar reverse in convection modes is observed [16].

With the simple ideas contained in the simulation, we
construct a continuum model for heap formation. Let
h�x, t� denote the height of the sandpile at position x and
time t; the equation of motion of h�x, t� is proposed to be

≠h�x, t��≠t � D=2h�x, t� 1 Vh�x, t� 2 bh�x, t�2, (1)

where D is a diffusion constant which approximates the
surface relaxation of fluctuations in h, and Vh is the
effect of increase in height due to vibrations per unit time.
In the simulation, the increase in height is ah per g time

FIG. 3. Phase diagram of steady heaps for a system with
N � 675 and L � 45. The insets show the characteristic
steady structures.
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step. One can think of V as being similar to a�g. It is
obvious that the 2bh2 term is the decrease in height per
unit time which can be interpreted as the rate of dissipa-
tion of energy in the system. The two terms Vh, 2bh2

can then be regarded as the first two terms of the Tay-
lor expansion of some nonlinear interaction. The h2 term
signifies the nonlinear couplings of different modes in the
system. Presumably higher order terms will enter for suf-
ficiently strong nonlinear effects. However, for simplic-
ity, we will use the form in Eq. (1). With the form given
above, the steady state continuum equation can be solved
with appropriate boundary conditions. To solve for the
steady state solution, it is convenient to rewrite the equa-
tion as

=2h�x� 1 k2h�x� 2 mk3h�x�2 � 0 , (2)

where k �
p

V�D and m is a dimensionless parameter
controlling the strength of the leading nonlinear effect.
We have taken b�D to be mk3 for dimensional reasons.
Details of the solution of the above equation will be given
elsewhere [20].

One of the remarkable predictions of such a simple
model is that both downward (mountain) and upward (val-
ley) modes of steady heap can be obtained as k is varied.
Similar to the result of our discrete model, it can be shown
that a downward mode of heaps will be formed for low
values of k while upward mode heaps result for larger
values of k. If one identifies k ~

p
a�g, one can even

compare the results from simulation with this continuum
model. A characteristic measure of heaping is the ratio
h�0��H, where H and h�0� are the height of the origi-
nally flat grains and the height in the center of the system,
respectively. Hence h�0��H . 1 and h�0��H , 1 corre-
spond to the downward and upward heaps, respectively.
Figure 4 displays the dependence of h�0��H on the scaled
variable

p
a�g obtained from the simulation for various

values of g. The data roughly collapse, suggesting a�g is
an appropriate scaling parameter. The continuum model
also predicts a peak in h�0��H (solid curve) which is in
qualitative agreement with the simulation data. The con-
tinuum model even fits the simulation data quantitatively
for low values of k. Deviations at large values of k are
expected since higher order nonlinearities are important
at strong vibrations. With this continuum equation, one
can also solve for steady state heaping profiles to com-
pare with real experiments. Figure 5 shows the steady
profile obtained from a quasi-2D heaping experiment [22]
with G � 1.5 together with the calculated profile from the
continuum model. It can be seen that the theoretical pre-
diction agrees well with the experimental profile.

It is clear that in both the discrete and continuum
models, there are two main effects, namely the input
and the dissipation of energy. In both models, energy
is put into the system by the increase in height of the
system. For the simulation model, the sandpile and void
dynamics relax the height fluctuations and dissipate the
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FIG. 4. Reduced height of the central pile, h�0��H vs
�a�g�1�2. The result of the continuum model is from solving
Eq. (2) with k ~ �a�g�1�2 for some fixed proportional constant
and m � 0.14.

input energy, while in the continuum model, the 2bh2

term removes the potential energy. Steady states can be
reached when the system balances these two effects. It
can also be seen from our models that vibration is treated
as a mean field with its effect averaged over one vibration
cycle. Its mere effect is to produce fluctuations in local
densities (input of energy). In response to these increases
in fluctuations, the empty site dynamics and the sandpile
rules interact to relax the fluctuations. Therefore, our
model is more or less a pure relaxation model. There is no
direct interaction of the granular flow with the vibration,
and the heap formation is just a steady state which
happens to be a stable state to dissipate the input energy.
It is obvious that our model will fail if the dissipation is
not strong enough to produce a compact sandpile. In real
experiments, when G ¿ 1, the heap will disappear and
the system becomes gaslike, which means the dissipation
rate of the granular material is not fast enough. In this
case, the system is characterized by how the granular flow
interacts with the external drive rather than how energy
is being dissipated. Such situations occur in the oscillon

FIG. 5. Profile of downward heap from experiment and the
continuum model. h and x are in units of mm. Data from the
experiment in Ref. [22] in a quasi-two-dimensional rectangular
vertical vibrating bed at G � 1.5. (Glass beads of diameter
a � 3 mm, initially flat layer of height 30 mm, and width
190 mm.)
and wave patterns in experiments of a thin layer under
vibration [23], where direct interaction of the granular
flow with the vibrating bed is strong.
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