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Rotational Level Structure of SF6-Doped 4HeN Clusters
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We present diffusion Monte Carlo calculations of low-lying rotational states of4HeNSF6 which
confirm recent experiments suggesting that dopant molecules trapped inside4He clusters behave as fre
rotors. Analysis of the rotational wave functions leads to a clear physical explanation for this
based on angular momentum coupling arguments; a fraction of the helium density is found to f
the rotation of the SF6 molecule adiabatically. This leads to a free-rotor spectrum and to a reductio
the effective rotational constant that is in excellent quantitative agreement with experiment.

PACS numbers: 36.40.Mr, 02.70.Lq, 33.20.Sn
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The rotational dynamics of a solute molecule in a cla
sical liquid are rather complicated: collisions scramble t
molecule’s angular momentum and, as a result, it is rar
possible to observe sharp rotational lines. In recent
periments, however, rotationally resolved spectra of sin
molecules in a quantum liquid have been obtained:
“dopant” molecules are introduced into droplets of supe
fluid 4He using pickup techniques in a molecular bea
which are then studied by laser spectroscopy [1–8]. T
rotational spectra so obtained can be fit rather well
assuming a free rotor Hamiltonian, usually of the sam
symmetry as the gas phase molecule, but with a reduced
tational constant. By contrast, rotationally resolved spe
tra are not observed in fermionic3He clusters which,
at the temperatures achieved in the experiments (T �
0.15 0.4 K), lie above the corresponding superfluid tran
sition temperature. These experimental findings have b
taken to imply that free rotation of the dopant molecul
is a consequence of the superfluidity of the bosonic4He
clusters [3].

SF6 was the first molecule to be studied using hig
resolution spectroscopy in a4HeN droplet [1]; accordingly,
this Letter provides a molecular explanation for the e
perimental observation of a free rotor energy level patte
in SF6-doped4He clusters. We also provide a physica
description of thereduction in the effective rotational con-
stant,B. This is accomplished through explicit quantum
calculations of the low-lying cluster rotational energy lev
structure for4HeNSF6, with 1 # N # 20, which spans the
first solvation shell of the molecule [9]. These calculatio
elucidate the generality of the phenomenon of appar
free rotation in4HeN by demonstrating that the spectro
scopically relevant excited states correspond toJ � j,
whereJ and j denote the total cluster and dopant ang
lar momentum quantum numbers, respectively. Desp
the anisotropy introduced by the dopant, these excitatio
distribute almost no angular momentum among the4He
atoms andj becomes a quasi-good quantum number. T
is a consequence of the boson statistics of4He, and would
not be true for3HeN clusters, in which the3He atoms
would carry some angular momentum, even in an isotro
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(central field) potential, due to fermion statistics. S6
is a prototype for molecules that are relatively stron
bound to He, and which have small rotational consta
(,1021 cm21). Our quantum calculations show that
this case the experimentally observed reduction in r
tional constant is already achieved withN � 8 helium
atoms. Analysis of the helium density around the ro
ing molecule reveals the underlying physics, namely,
a fraction of the helium density in the first solvation sh
is able to follow the molecular rotation adiabatically. O
analysis demonstrates the interplay of two factors, nam
(i) the strength of the anisotropic molecule-helium bin
ing, and (ii) the magnitude ofB0, the gas phase rotation
constant, in determining theextent of the reduction in the
effective rotational constant,B.

Calculation of the low-lying rotational energy lev
spectrum is accomplished here using a diffusion Mo
Carlo algorithm. Quantum Monte Carlo methods are
only viable option for performing accurate calculatio
for clusters containing a large number of helium atom
Alternatives such as coupled channel methods or basi
calculations are very difficult to extend beyond the simp
case ofN � 1. This is true even if, as is done here, t
Born-Oppenheimer approximation is used to uncouple
vibrations from rotations, i.e., the molecule is treated a
rigid body. Application of diffusion Monte Carlo method
to the rotation of rigid molecules was first made by Bu
[10]. We introduce here a new approach, referred to
fixed-frame diffusion Monte Carlo (FFDMC), which is
tailored to treat both overall and internal rotations of v
der Waals clusters when the interactions are weakand
exhibit pronounced anisotropy.

In the laboratory frame the Hamiltonian forN helium
atoms interacting with a rigid SF6 molecule via an aniso
tropic potentialV �r , Q, F� is given by

H � 2
h̄2

2mI
=2

I 2
h̄2

2mHe

NX
i�1

=2
i 1

NX
i,j

VHe
He �rij�

1

NX
i�1

VHe
I �riI , QiI , FiI � 1 Hlab

rot . (1)
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Here rij and riI denote He-He and He-molecule separa-
tions, respectively, QiI and FiI are the spherical polar
angles specifying the helium position in a molecule-fixed
frame, and mI and mHe refer to the masses of the im-
purity (dopant) molecule and the He atom, respectively.
VHe

He �rij� and VHe
I �riI , QiI , FiI � denote the He-He [11] and

He-molecule [12] two-body potentials, respectively. For
a spherical top molecule, the rotational part of the Hamil-
tonian is simply given by

Hlab
rot � B0� j2

x 1 j2
y 1 j2

z � . (2)

The essence of FFDMC is to recognize that the Monte
Carlo translational and rotational moves can be made
in the same frame of reference. Doing this avoids the
problem of inadvertently averaging over the projections
of the molecular angular momentum j (or equivalently,
over the potential anisotropy), which may happen if the
translational and rotational moves are made in different
frames of reference. This is a particularly acute problem
for 4He-SF6 because the ground state, although localized
at the threefold sites, is somewhat “ fragile” in that it lies
above all of the saddle points in the potential. For a
spherical top molecule such as SF6, both rotational and
translational kinetic energy operators are quadratic forms
that can be simultaneously diagonalized in any frame, so
the rotational moves can be made around laboratory fixed
axes, just like translational moves. For nonspherical tops,
however, both rotations and translations must be performed
in the molecule-fixed frame, i.e., with reference to the
molecular principal axes.

The short-time Green’ s function is factorized into
the usual translational part, and a product of three one-
dimensional rotational terms which are derived from Hlab

rot .
For small rotations, each of these terms is of the form

�fqje
2B0tj2

q jf0
q� � �4pB0h̄2t�21�2 exp

∑
2

�fq 2 f0
q�2

4B0h̄2t

∏
,

(3)

where q � �x, y, z� are the laboratory frame Cartesian co-
ordinates and fq denotes an angle of rotation about the
q axis [13]. In an “unbiased” calculation, this short-time
Green’ s function is sampled together with the translational
Green’ s function to propagate the ground state wave func-
tion F [14]. For N � 1, i.e., the 4He-SF6 “dimer,” when
all moves are made consistently in the laboratory-fixed
frame, the correct anisotropic ground state energy, Eani

0 �
237.1(0.23) K (confirmed by close coupling calculations
made with the method of Ref. [15]), is obtained with un-
biased sampling. Unbiased sampling becomes inefficient
as N increases however, and importance sampling is then
essential for both ground and excited state calculations.
Sampling from a distribution f � CT F which is “biased”
by a physically motivated trial function CT increases effi-
ciency and eliminates numerical instabilities (e.g., due to
dissociation). For excited state calculations, it also allows
one to impose the necessary nodal constraints. This is done
for the first time for rotational degrees of freedom here, im-
plementing the importance sampling for rotations by us-
ing a trial function, CT �RN11, a, b, g�, where a, b, g

are the Euler angles, which can be related to fx, fy, fz.
This function is dependent on both translational and ro-
tational coordinates. The angular degrees of freedom in
the biased distribution f � CT F are then sampled by re-
placing �fq 2 f0

q� in Eq. (3) by �fq 2 f0
q 2 B0tFrot

q �,
where Frot

q � 2 ≠

≠fq
lnCT �RN11, a, b, g�, for each q [13].

Thus, rotations are treated on exactly the same footing as
translations, at both the importance sampled and nonim-
portance sampled levels of calculation.

Our trial wave functions CT �RN11, a, b, g� are based
on pairwise contributions in the ground state, multiplied by
the appropriate rotational wave functions (Wigner rotation
matrices) which are used to impose angular nodal structure
in the laboratory frame for rotational excited states. The
factorization of dopant angular terms and translation terms
in CT ensures the correct limiting behavior when the
dopant-helium interaction potential is isotropic. For N 4He
atoms, the laboratory frame trial wave function used is

CT �

(
NY

i�1

J�riI , QiI , FiI �

) (
NY

i,j

et�rij�

)
w�a, b, g� . (4)

The He-He two-body wave function et�rij� is the same as
used in earlier studies [9] and J�r , Q, F� is the ground
state 4He-SF6 dimer trial function. For the latter we used
both (i) the static (B0 � 0, no SF6 rotation) VMC wave
function of Ref. [9], and (ii) a numerically constructed
trial wave function obtained by nonlinearly fitting unbiased
FFDMC distributions to the expansion:

J�r , Q, F� �
X

n�,�,m

x�
n�

�r�Ym
� �Q, F� . (5)

Similar excitation energies are obtained from both forms.
Evaluation of the very small energy differences between
ground and excited rotational states is done in the fixed
node approximation, employing correlated sampling ac-
cording to the algorithm of Wells [16].

For excited states we use trial wave functions corre-
sponding to a rotational excitation localized primarily on
the molecule, i.e., J � j. w�a, b, g� in Eq. (4) is then
simply the rotation matrix appropriate to the state in ques-
tion, e.g., for J � 1, j j, k, m� � j1, 0, 0�, where k and m
are the projections of j on the molecule-fixed and space-
fixed z axes, respectively. The separable trial function CT

therefore represents an excited state in which the angular
momentum is entirely localized on the dopant molecule,
with zero angular momentum in the helium fraction. For
an anisotropic potential, where j is no longer conserved,
this is only an approximation to the true situation. How-
ever, for N � 1, comparison of ground and excited state
energies derived from these trial functions with the results
3813
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of coupled channel calculations [15] show agreement to
better than 99%, and also show that the J � j compo-
nents provide the dominant contributions to the low-lying
eigenstates. Thus, a restriction to states with J � j, which
correlate in the isotropic limit with trial functions having
J � j, captures the correct nodal structure of the He-SF6
dimer. The accuracy of the free rotor nodal structure for
excitations in larger clusters has been demonstrated re-
cently with the use of the projector Monte Carlo approach
known as POITSE, which is free of nodal constraints [17].

Figure 1 shows the energy levels corresponding to j �
0, 1, 2, and 3 (relative to the ground state) as a function of
the number of 4He atoms, N , in the cluster. There is a clear
and systematic decrease in the level spacings with N . For
all N the levels are well fit by the spherical top expression
BJ�J 1 1�. The value of rotational constant B in each case
is shown at the top of the corresponding stack of levels.
There is a rapid monotonic decrease in B from its starting
value B0 � 0.091 cm21 at N � 0, to a saturation value of
0.034 cm21 which is reached at N � 8. The asymptotic
value achieved by B is in remarkable agreement with the
experimental value B � 0.033 cm21 obtained for clusters
with N $ 103 at T � 0.3 0.4 K [1,2].

We have also calculated the excitation energies of the
angular momentum states of the 4He atoms, i.e., j �
0 combined with the ladder of � � 0, 1, 2, . . . states in
Eq. (5), which give rise to cluster excitations having J 2

j . 0. These states are significantly higher in energy than
the J 2 j � 0 states shown in Fig. 1. This suggests that
there will not be an efficient transfer of angular momentum

FIG. 1. Cluster rotational excitation energies corresponding to
J � j, with j � 0, 1, 2, and 3, for 4HeNSF6 with N � 1 20.
The empirical value of the rotational constant B yielded by each
stack of levels for given N is shown at the top of each stack.
Both error bars in the excitation energies, and the resulting error
in B obtained from the fit to a free rotor pattern are in all cases
O�1024 cm21�.
3814
from the molecule to the 4HeN matrix, so that the spectrum
will be dominated by the low energy, free-rotor states.

In the experimental analysis of Ref. [1], the reduced ro-
tational constant for SF6 in 4HeN was phenomenologically
explained by making the simple classical assumption that
a “supermolecule” is formed, consisting of SF6 together
with eight 4He atoms rigidly attached at the eight three-
fold minima in the molecule-helium potential. These 4He
atoms were regarded as blockers whose presence reduces
the anisotropy of the interaction of the “dressed SF6” su-
permolecule with the rest of the cluster, leading to essen-
tially free rotation of the supermolecule. While attractively
simple, this model does not account for the quantum na-
ture of the 4HeN environment and also ignores exchange
effects with other helium atoms, particularly those in the
first solvation shell which number considerably more than
eight [9]. Moreover, such a supermolecule model cannot
explain the behavior of lighter dopant molecules which
are less strongly bound, have larger B0 values, and which
show considerably less reduction in rotational constant in
4HeN [4–6,8].

Analysis of the FFDMC wave functions shows that the
fundamental physics determining the magnitude of B is
the extent of adiabatic following of the molecular rotation
by the 4He atoms in its vicinity. This is illustrated in
Fig. 2, which shows the ground state 4He wave function
for N � 8, projected onto a sphere of fixed radius located
at the maximum in the radial probability density from the
SF6 center-of-mass. When the true gas phase value B0 �
0.091 cm21 is employed, the amplitude is concentrated
at the eight threefold sites of the SF6 molecule (Fig. 2,
left panel), but when a tenfold larger value of B0 is used,
the wave function is noticeably more delocalized (Fig. 2,
right panel). Figure 2 (left panel) therefore reveals that

FIG. 2 (color). Ground state wave function for 4He8SF6,
obtained from FFDMC without importance sampling, projected
onto a sphere of radius r � 8 a.u. Results are shown for
calculations with B0 � 0.091 cm21 [B0�SF6�], left panel, and
B0 � 0.91 cm21 [10 B0(SF6)], right panel. The SF6 molecule
is located at the center of the sphere and the S-F bonds are
aligned with the Cartesian axes. The amplitude is represented
by a color scale, with blue denoting high values (on the C3
axes) and red denoting low values (on the C4 axes). The black
lines superimposed show contour levels of the SF6-He potential
at this radius. All distances are given in a.u.



VOLUME 83, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 8 NOVEMBER 1999
the eight 4He atoms are able to follow the rotation of the
SF6 molecule adiabatically, i.e., they can adjust essentially
instantaneously to the “slow” rotation of the SF6. With a
larger value of B0, however, for a given potential aniso-
tropy, the extent of adiabatic following decreases, which
results in a more isotropic 4He distribution in the molecule-
fixed frame. The density also smears out as more 4He
atoms are added, implying that only a fraction of the first
solvation shell (22-23 atoms in total) [9] can adiabatically
follow [18].

The interplay between potential anisotropy and value of
B0 also controls the energetics, and hence the actual mag-
nitude of B. This can be illustrated by raising the “ rheo-
stat” parameter B0 beyond its natural value, whereupon
the FFDMC excited state energies yield a much smaller
reduction in B. For example, with B � 0.91 cm21, a
saturation value of B � 0.85 cm21 is obtained for N �
8, representing a reduction to �93% B0, which is far
weaker than the reduction to �37% B0 seen in Fig. 1.
The extent of reduction in B correlates with the extent of
adiabatic following by the helium around the molecule.
Conversely, the adiabatic following is dependent on the
magnitude of the rotational kinetic energy (determined by
the gas phase rotational constant B0) relative to the aniso-
tropy of the molecule-helium interaction potential. The
ground state energies also increase with B0, until, in the
limit of very large B0, the anisotropy is effectively aver-
aged over and Eiso

0 is obtained. For example, for N � 1
with B0 � 0.91 cm21, we obtain E0 � 234.1(0.19) K,
which is now only �1 K lower than Eiso

0 [9]. Thus, for a
given potential, the energetic effect of increasing B0 is to
move all energy levels to the isotropic limit.

To summarize, our FFDMC calculations for SF6 ro-
tating in 4HeN demonstrate that there is a preservation
of coherent rotational motion in a bosonic quantum fluid
cluster. This occurs because only those rotational states
in which the vast majority of the cluster angular momen-
tum is carried by the dopant molecule are accessed. The
existence of quantum rotational motion for a molecular
dopant uncoupled with angular momentum states of 4HeN ,
is thus reflected in the appearance of a free rotor spectrum
for small j. This behavior is consistent with the domi-
nantly superfluid character of doped 4HeN clusters at larger
sizes N [18,19].

In this “molecular” quantum mechanical analysis, the
essential difference between a bosonic 4He cluster and a
fermionic 3He cluster appears in the trial function, Eq. (4).
A qualitative analysis of the fermionic cluster at T � 0
may be made by replacing the first term by a determi-
nantal wave function and neglecting He-He correlations. It
is then apparent that for larger N , the 3He atoms must carry
some angular momentum, and the lowest energy excita-
tions will no longer have J � j. However the adiabatic
following of helium identified above is independent of the
isotope, so that whether the energy level structure is sig-
nificantly different in 3HeN is not evident in advance. The
detailed rotational energy spectrum for doped 3He clusters
at T � 0 (or at finite temperatures below the correspond-
ing superfluid transition) is thus a key open question for
future study.
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