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Experimental Investigation of Nonergodic Effects in Subrecoil Laser Cooling
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(Received 25 June 1999)

We present the first detailed investigation of the line shape of the momentum distribution of atoms
cooled far below the recoil limit. This distribution is deduced from a direct measurement of the atomic
spatial correlation function of metastable helium atoms cooled by velocity-selective coherent population
trapping. The measured line shape is then compared to the prediction of an analytical model of this
cooling based on Lévy statistics. A very good agreement is found between experiment and theory and
fundamental features such as self-similarity and nonergodicity are identified.

PACS numbers: 32.80.Pj, 42.50.Vk
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Laser cooling techniques are commonly used to low
the temperature of neutral atoms and ions, making th
momentum distribution as narrow as possible. M
often, the details of the shape of this distribution do n
matter as much as its width, which gives the moment
spread of the atoms. Nonetheless, there is a lot
learn from this shape as it reflects the dynamics a
essential features of the evolution of the atoms dur
the cooling. Using a matter wave interferometric meth
described in a previous paper [1], we present in this Le
a detailed experimental investigation of the moment
distribution of metastable Helium atoms, cooled w
below the recoil limit in the nanokelvin range. As i
other physical problems like micelles or spin glass
as well as in finances or geology, “broad distribution
naturally occur in subrecoil cooling. By broad, we me
a distribution with power-law tails decreasing too slow
to have its mean and/or its variance defined. Lé
statistics are known to be the relevant tool to deal w
these distributions [2,3]. Here, we compare the measu
momentum distribution of the atoms with a theoretic
model based on Lévy statistics and we show how
measurements reveal some important features of
cooling process such as self-similarity and nonergodic

In most cooling schemes, the ensemble of ato
reaches a dynamical equilibrium resulting from a com
tition between the cooling process, a friction force whi
damps the atomic momentum, and a heating process
momentum diffusion due to spontaneous emission. T
motion of an atom interacting with laser light is thus ve
similar to a classical Brownian motion, and the resulti
momentum distribution is found to be Gaussian, as
pected for a normal random walk.

The situation is quite different for subrecoil cooling.
this case, the cooling mechanism is not based on a fric
force but on an inhomogeneous random walk. More p
cisely, the steps of the random walk in momentum sp
have still the sizēhk, the photon momentum, but the jum
rateR�p� is now momentum dependent and vanishes w
the atomic momentump tends to zero. If, after a spon
taneous emission, the atom reaches a state with a
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low momentump � 0, the mean timet�p� � �R�p��21

it remains there before undergoing the next jump can
very long. The random walk in momentum space the
fore slows down asjpj ! 0, leading to an accumulation o
atoms aboutp � 0, with a momentum distributionP �p�
whose widthdp can become much smaller thanh̄k (subre-
coil regime). Up to now, the vanishing ofR�p� for p � 0
has been implemented by using two different methods:
locity selective coherent population trapping (VSCPT), u
ing a velocity selective destructive quantum interferen
between different transition amplitudes leading to the sa
excited state [4] and velocity selective Raman cooling [5

One of the most important features of subrecoil coolin
is the absence of steady state. Even for an arbitra
long interaction timeu, there are always atoms with a
small enoughp that their characteristic evolution time
t�p� is longer thanu and even approaches infinity a
jpj ! 0. A first consequence of this situation is tha
P �p� never stops to evolve whenu increases, with a
width dp decreasing as1�

p
u (for VSCPT). This has

been experimentally checked with a great accuracy [
Nonergodic features also appear in the shape ofP �p� and
their investigation is the subject of this Letter. Befor
describing our experimental results, we briefly sketch t
main steps in the derivation ofP �p�. More details can
be found in [6,7].

We first introduce the probability distributionP�tS jp�
of the timetS spent in a statep before the next sponta-
neous jump. This distribution is nothing but the wel
known “delay function” or “waiting time distribution”
[8,9]. In the long time regime,P�tS jp� can be approxi-
mated by [10]:

P�tS jp� � R�p�e2R� p�tS , (1)

where the jump rate is given by

R�p� �

8<
:

1
t0

� p
p0

�2 if jpj , p0 ,
1
t0

if jpj $ p0 .
(2)

Here we neglect the slow decrease ofR�p� at largep due
to the Doppler effect. This simplification is valid if the
© 1999 The American Physical Society
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interaction time is short enough so that the momentum
diffusion during u does not allow p to reach large values.

We now introduce a value ptrap such that all atoms
with jpj # ptrap have a small enough jump rate to
be considered trapped in momentum space [11]. An
atom initially trapped will eventually emit a spontaneous
photon which, if we assume ptrap ø h̄k, will certainly
kick it out of the trap. Outside the trap, it will undergo
a series of spontaneous emissions, which will eventually
bring it back to the trap, and so on. The time evolution
of the atom therefore consists of a succession of trapping
and diffusing periods. We call ti the duration of the ith
trapping period, and t̂i the duration of the ith diffusing
period (t̂i is a “fi rst return time” in the trap).

It then can be shown from Eqs. (1) and (2), that
the two random variables t and t̂ are distributed as
P�x� � 1�x3�2 for large x. We recognize here a typical
power law for the tails of a “broad distribution” with no
mean value or variance. Therefore, if we are interested,
for example, in the total time an atom has spent in the
trap, namely T �

P
i ti , we can no longer use the central

limit theorem. Instead we must resort to the generalized
central limit theorem which states that T is distributed
not as a Gauss law but as a Lévy law [3]. In fact, the
broad tails of P�t� and P̂�t̂� are one of the key points
of the cooling process since they reflect the fact that the
evolution of the system is mainly dominated by the very
long times.

Another important quantity for the calculation of P �p�
is the “sprinkling distribution” S�t� : S�t�dt is the proba-
bility that an atom enters the trap between t and t 1 dt,
whatever the number of entries and exits it made before.
This function can be calculated from P�t� and P̂�t̂� and
one finds S�t� ~ t21�2, which shows that the sprinkling
of the trap becomes weaker and weaker as t increases,
an indication of the “aging” of the system. Finally, one
can say that an atom with jpj , ptrap at time u entered
the trap for the last time at some time t # u and did not
undergo a spontaneous jump between t and u. The final
momentum distribution is therefore given by

P �p� ~
Z u

0
S�t�P�p�C�p, u 2 t� dt , (3)

where P�p� is the probability that an atom entering the
trap has a momentum p with jpj # ptrap , and C�p, u 2

t� is the probability that its next spontaneous jump would
occur after a delay tS $ u 2 t. With the assumption
ptrap ø h̄k, one can consider P�p� as uniform and
equal to 1�2ptrap . In addition, one has C�p, u 2 t� �R`

u2t P�tSjp� dtS � e2R� p� �u2t�. A simple calculation
then gives

P �p� ~ N
1

2pp
e2p2�p2

u

Z p2�p2
u

0
x21�2ex dx , (4)

where N is a normalization constant and the parameter
pu is defined as
R�pu�u � 1 ) pu �
1
4

h̄G

ER

Ṽ

ũ1�2
3 h̄k . (5)

In this expression, h̄G is the natural width of the transi-
tion, ER � h̄2k2�2M the recoil energy, Ṽ � V�G and
ũ � uG the dimensionless Rabi frequency and interac-
tion time [12]. The expression above shows that P �p�
can always be transformed into the same law G�h�, in-
dependent of pu , by a simple rescaling h � p�pu . The
momentum distribution thus displays a self-similar behav-
ior: it remains time invariant in the scale parameters used.

It is easy to prove from Eq. (4) that the tails of P �p�
decrease as 1�p2, and this can be given a simple physical
explanation. For a momentum jpj ¿ pu , the mean time
t�p� � �R�p��21 spent in the state p is, according to (5),
much shorter than u. A trapping event with momentum
jpj ¿ pu can thus be sampled many times during the
observation time u, and we expect time and ensemble
averages to be equivalent. The population of a state p is
therefore proportional to the mean time spent in this state
leading to P �p� ~ �R�p��21 ~ 1�p2. However, this be-
havior in 1�p2 cannot be extrapolated for jpj , pu .
First, it would lead to a nonnormalizable distribution. A
second, more physical argument is that jpj , pu implies
t�p� . u so that the corresponding trapping event has a
high probability not to be sampled many times during u.
Time and ensemble averages can thus no longer coincide
and the deviations of P �p� from a 1�p2 law at small p
reflect the resulting nonergodicity. However, in the pres-
ence of a weak loss process adding a nonzero jump rate
R0 varying slowly with p about p � 0, the distribution
of the delay tS would be truncated beyond the value R21

0 .
In the regime u ¿ R21

0 , all trapping events could then
be sampled many times during u and the system would
show ergodicity with a Lorentzian momentum distribution
P �p� ~ �R�p��21 ~ 1��R0 1 p2�t0p2

0�.
The theoretical line shape (4), valid for p . pu as

well as p , pu , results from an ensemble average. The
corresponding rescaled distribution G�h� is represented
by the solid line of Fig. 1. For h , 1, it is much flatter
than the normalized Lorentzian L �h� having the same
tails (dotted line of Fig. 1). This arises from the fact that,
whatever the interaction time u, atomic states with jpj ,

pu have even longer trapping times and thus cannot be
discriminated by the experiment. This effect is even more
dramatic if we use, instead of the “probabilistic” form (1),
the “deterministic” form P�tSjp� � d�tS 2 t�p�� which
means that an atom trapped with momentum p remains
in the trap during a well-defined time t�p� � �R�p��21.
In this case, G�h� displays a plateau for 0 # h # 1 and
then decreases with the same asymptotic behavior in 1�h2

as seen before (dashed line of Fig. 1). With the more
correct form (1) of P�tSjp�, the plateau disappears but a
clear flattening remains present.

It is challenging to obtain an experimental evidence for
the nonergodicity of the cooling process by observing the
3797
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FIG. 1. Theoretical normalized momentum distribution as a
function of the dimensionless parameter h with the probabilistic
form of the delay function (solid line). Around h � 0, G�h�
is much flatter than the Lorentzian L �h� having the same
asymptotic behavior (dotted line) and this is related to the
nonergodicity of the VSCPT cooling. The effect is even
stronger with the deterministic model (dashed line).

predicted shape (4) of P �p�. With long interaction times,
VSCPT reaches the nanokelvin range and it becomes hope-
less to measure accurately P �p� with the usual time-of-
flight technique. We rather use a new method, described
in detail in [1], which gives the Fourier transform of P �p�
with a high degree of accuracy. After a VSCPT cooling
stage, an atom is left in a coherent superposition of two
completely overlapping wave packets with opposite mean
momenta 6h̄k. As soon as the VSCPT laser beams are
switched off, the two wave packets freely fly apart. Af-
ter a “dark period” of duration tD , they are separated by
j � 2�h̄k�M�tD . We then switch on the VSCPT light
again for a short pulse of duration tA � 8 ms. During the
dark period, the overlap of the two wave packets decreased
and so did the destructive interference which inhibits the
fluorescence for completely overlapping wave packets. A
3798
fraction of atoms therefore absorbs light and diffuses away
in momentum space. We measure the remaining fraction
PNC which is not coupled to the light. Since the overlap
is simply given by the Fourier transform of P �p�, we de-
rive [13]:

PNC�tD� �
1
2

1
1
2

Z
dp P �p� cos

µ
2kptD

M

∂
. (6)

Like P �p�, the function PNC�tD� is self-similar and can
be rescaled yielding the function F �z � where z � t̃D�t̃u ,
t̃D � tDG, and t̃u � MG��2kpu� � ũ1�2Ṽ21.

The experiment was performed after a careful cancella-
tion of the magnetic field to 0.3 mG using the Hanle effect
[14]. We measured Ṽ with a high degree of accuracy at
the exact location of the atomic cloud, by use of the radia-
tive broadening of the Hanle effect signal [15]. We took
12 sets of data with Ṽ � 0.72�2� and different values of ũ

ranging between 2000 and 15 000. We then rescaled each
set according to t̃D ! t̃D ũ21�2 � z�Ṽ and removed the
data points corresponding to t̃D ũ21�2 , 0.8 as explained
in [13]. For the raw data (Fig. 2a) the 12 measurements
do not have the same decay time since P �p� and thus
PNC�t̃D� depend upon ũ. After rescaling (Fig. 2b), the
data collapse and lie very well on the theoretical curve cor-
responding to Ṽ � 0.72, directly demonstrating the self-
similarity of the process.

As explained above, a loss process could introduce er-
godicity in the system and change P �p� into a Lorentzian.
It is thus interesting to see if the data are well fitted by the
expression (4) and if this fit is significantly better than
the one using a Lorentzian momentum distribution. Since
we measure the Fourier transform of P �p�, we thus seek
deviations of the measured F �t̃D ũ21�2� from an expo-
nential. The average of the 12 sets of rescaled data is
presented in Fig. 3 along with a fit by the calculated func-
tion F with Ṽ as the only adjustable parameter (solid
FIG. 2. Measured PNC�tD� (data marks) before (a) and after (b) rescaling. These 12 data sets are obtained with the same Rabi
frequency Ṽ � 0.72�2� but different values of the interaction time ũ ranging from 2000 to 15 000. Since the final temperature
depends upon ũ, the 12 curves of raw data do not have the same decay time. After rescaling, all the data collapse on the theoretical
function (solid line).
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FIG. 3. Fit of the averaged data with the calculated function
F (solid line) or a simple exponential (dashed line). Residues
are presented in the inset. The vertical bar on the left is the
largest error bar of the data. The data are well adjusted by the
theoretical function � x2 � 0.0049� and the fit gives Ṽ � 0.70
in very good agreement with the measured value Ṽ � 0.72�2�.
The exponential fit leads to x2 � 0.0285.

line) and a simple exponential fit (dashed line). The data
fit well to the function derived from Lévy statistics and
give Ṽ � 0.70�0�, in very good agreement with the ex-
perimental value 0.72(2). On the contrary, the best ex-
ponential fit fails to reproduce the signal, especially for
t̃D ũ21�2 , 4 where the discrepancies are 3 or 4 times
larger than the standard deviation s represented as error
bars on the plot. This clearly shows that we are not in an
ergodic regime limited by some loss process. It should
be noted that the data exhibit a weak but statistically sig-
nificant deviation from the theory around t̃D ũ21�2 � 5.
In order to check if a residual magnetic field could pro-
duce such an effect, we performed the same experiment in
the presence of a controlled transverse magnetic field and
found no modification of the signal as long as B , 2 mG.
Since we compensate B with a precision of about 0.3 mG,
we ruled out the possibility that this deviation could be
due to a stray magnetic field. The largest deviation oc-
curring at a time much larger than the decay time of F ,
this could be related to some details of P �p� in the close
vicinity of p � 0, which are not identified in our model.

In conclusion, we have used an interferometric method
to determine the line shape of the momentum distribution
of ultracold atoms with a great accuracy. Our results
confirm the predictions of a theoretical analysis of VSCPT
based on Lévy statistics and give clear evidence for
fundamental features of subrecoil cooling such as self-
similarity and nonergodicity. This not only gives a new
lightening on subrecoil cooling, but also is one of the
very few experimental evidences of anomalous diffusion
processes [16] in laser cooling.
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