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Transition Temperature of a Uniform Imperfect Bose Gas
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We calculate the transition temperature of a uniform dilute Bose gas with repulsive interactions, using
a known virial expansion of the equation of state. We find that the transition temperature is higher
than that of an ideal gas, with a fractional increase K0�na3�1�6, where n is the density, a is the S-wave
scattering length, and K0 is a constant given in the paper. This disagrees with all existing results,
analytical or numerical.

PACS numbers: 05.30.Jp, 67.20.+k, 67.40.Kh
The weakly interacting Bose gas is an old subject that
has found new life since the experimental discovery of
Bose-Einstein condensation in ultracold trapped atoms.
Although there is a vast literature on the subject, the
transition temperature of the interacting gas remains
a controversial subject, even in the uniform case. In
this note, we present a calculation that is simple and
transparent, in the hope that it will settle the controversy.

In the gas phase, the equation of state of a general
system is given in the virial expansion in the parametric
form [1]

l3bP �
X̀
��1

b�z�,

l3n � z
≠

≠z
�l3bP� �

X̀
��1

�b�z�,

(1)

where P is the pressure, n is the particle density, z is
the fugacity, b � �kBT �21, and l �

p
2pbh̄2�m is the

thermal wavelength. The “cluster integral” b� expresses
the property of an �-particle system in infinite volume.
For the ideal Bose gas, we have

l3bP � g5�2�z� ,

l3n � g3�2�z� ,
(2)

where

ga�z� �
X̀
��1

z�

�a
. (3)

No single-particle state has a macroscopic occupation
in this phase. However, the function g3�2�z� is mono-
tonic, and bounded by g3�2�1� � z �3�2� � 2.612. Thus,
particles must go into the zero-momentum state when
l3n . z �3�2�, making this state macroscopically occu-
pied. Thus, the thermal wavelength at transition is l0 �
�z �3�2��21�3n21�3, and this gives the transition tempera-
ture of the ideal Bose gas at a fixed density n:

T0 �
2p h̄2

mkB
�z �3�2��22�3n2�3. (4)

Now consider a uniform imperfect Bose gas with repul-
sive interactions with equivalent hard-sphere diameter a
(S-wave scattering length). We denote the transition tem-
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perature by Tc, and its fractional shift by
DT
T0

�
Tc 2 T0

T0
. (5)

In an early statement on the subject [2], it was argued that
DT . 0, since a spatial repulsion leads to momentum-
space attraction [3], and this would make the imperfect
gas more ready to condense. However, a Hartree-Fock
calculation by Fetter and Walecka [4], and one by
Girardeau [5] based on a mean-field method, yield the
opposite sign DT , 0. A calculation of the grand
partition function to one-loop order by Toyoda [6] also
yields a negative sign. Specifically, Toyoda obtainsµ

DT
T0

∂
Toyoda

� 2K0�na3�1�6, (6)

where

K0 �
8
p

2p

3�z �3�2��2�3 � 3.527 . (7)

Barring calculational errors, this must be considered reli-
able, since it is the lowest-order result of a systematic ex-
pansion. All subsequent calculations, alas, yield answers
different from this and from one another. Stoof [7] gives
DT � �16p�3z �3�2�� �a�l0�, while Bijlsma and Stoof
[8] discuss renormalization-group equations that give a
result consistent with DT � a. A numerical calculation
based on Monte Carlo simulation by Grüter et al. [9]
gives DT�T0 � c0�na3�g , where c0 � 0.34 6 0.06, and
g � 0.34 6 0.03. A recent calculation involving some
mean-field assumptions [10] gives DT�T0 � 0.7�na3�1�3.
Thus, there is no consensus on how DT should depend on
the scattering length, nor even the sign.

We shall calculate Tc using the parametric equation of
state obtained some time ago [11] via a calculation of all
cluster integrals to order a2:
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where P is the pressure, and

h�z� � �g3�2�z��2g1�2�z�
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1

z�1m1n
p

�mn �� 1 m� �� 1 n�
. (9)

We shall work only to lowest order in a, and take from
the second equation of (8)

l3n � g3�2�z�
∑
1 2

4a
l

g1�2�z�
∏

1 O�a�2. (10)

As a function of z, the right side rises through a maximum
at some value z � zc, and then approaches 2` as z !
1. We must require z ! 0, as n ! 0. As n increases
at fixed temperature, z increases monotonically until it
reaches zc, beyond which there is no solution. The
assumption of no macroscopic occupation breaks down
at this point, which marks the transition point of the Bose-
Einstein condensation.

Since the treatment is valid only when a�l ø 1, we put

zc � 1 2 d �d ø 1� . (11)

The maximum can be located with the help of the expan-
sions [12]

g3�2�zc� � z �3�2� 2 2
p

p d1�2,

g1�2�zc� �
p

p d21�2.
(12)

We then find

d �
2a
l

z �3�2� . (13)

The critical temperature Tc can be found by substituting
this value into (10), with the result

DT
T0

� K0�na3�1�6, (14)

where K0 is given in (7). Thus, we agree exactly with
Toyoda except for the sign.

We close with some comments:
(1) Our result DT �

p
a indicates that it cannot be

continued to a , 0. This is a reflection of the fact that
a gas with attractive interactions will collapse, rendering
the scattering-length description invalid.

(2) In a mean-field approximation, the den-
sity is given by (2), except that z is replaced by
z exp�28p h̄2an�mkBT �. It is clear that this leads to
DT � 0. On the other hand, the mean-field result yields
(8) to lowest order in a, and raises the question whether
DT � 0 in our calculations, if we were capable of
summing the virial series to all orders. Barring an usual
conspiracy, the answer is no, because the virial expansion
differs from mean-field theory in O�a2�, and is therefore
not the same as mean-field theory.

(3) We have obtained DT by approaching the transition
point from the high-temperature side, and that is why the
virial expansion is useful. It appears to be more difficult
to obtain it from the low-temperature side, because, in the
usual technique involving the Bogoliubov transformation,
the quasiparticles reduce to noninteracting particles at the
transition point. An adequate treatment of the region zc ,

z , 1 must go beyond the usual Bogoliubov approach.
Only then can we determine the order of the phase
transition.

This work was supported in part by a DOE cooperative
agreement DE-FC02-94ER40818.

[1] K. Huang, Statistical Mechanics (Wiley, New York,
1987), 2nd ed., Chap. 10.

[2] K. Huang, in Studies in Statistical Mechanics, edited by
J. de Boer and G. E. Uhlenbeck (North-Holland Publish-
ing, Amsterdam, 1964), Vol. II, pp. 1–106.

[3] Ref. [1], p. 303, Prob. 12.7.
[4] A. Fetter and J. D. Walecka, Quantum Theory of Many-

Particle Systems (McGraw-Hill, New York, 1971),
Sec. 28.

[5] M. Girardeau, Phys. Fluids 5, 1458 (1962).
[6] T. Toyoda, Ann. Phys. (N.Y.) 141, 154 (1982).
[7] H. T. C. Stoof, Phys. Rev. A 45, 8398 (1992).
[8] M. Bijlsma and H. T. C. Stoof, Phys. Rev. A 54, 5085

(1996).
[9] P. Grüter, D. Ceperley, and F. Laloë, Phys. Rev. Lett. 79,

3549 (1997).
[10] M. Holzmann, P. Grüter, and F. Laloë, Eur. Phys. J. B10,

239 (1999).
[11] K. Huang, C. N. Yang, and J. M. Luttinger, Phys. Rev.

105, 776 (1957). See also Ref. [1], p. 44.
[12] J. E. Robinson, Phys. Rev. 83, 678 (1951). See also

F. London, Superfluids (Wiley, New York, 1954),
Vol. II, Appendix, p. 203.
3771


