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The integral of the Wigner function over a subregion of the phase space of a quantum system may
be less than zero or greater than one. It is shown that for systems with 1 degree of freedom, the
problem of determining the best possible upper and lower bounds on such an integral, over all possible
states, reduces to the problem of finding the greatest and least eigenvalues of a Hermitian operator
corresponding to the subregion. The problem is solved exactly in the case of an arbitrary elliptical
region. These bounds provide checks on experimentally measured quasiprobability distributions.
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The Wigner function has been much studied since
its introduction [1], not only in the context of quantum
physics [2], but also in signal processing [3]. For a
quantum system in a pure state, the Wigner function
carries the same information as the wave function, up
to an unimportant constant phase. In the case of a
mixed state, it carries the same information as the density
operator.

An important property of the Wigner function, one
of several properties which distinguish it from classical
probability densities, is that its integral over a given
subregion of phase space may be negative or greater than
one. Quasiprobability distributions which, according to
quantum theory, correspond to Wigner functions, have
been measured in recent experiments, for a variety of
states of light and matter [4–10], and negative values have
indeed been observed. These experiments are probing
the basic structure and predictions of quantum mechanics
in a new way, and the prospect of increasingly accurate
experiments of this type adds greatly to the interest in,
and importance of, the theory of the Wigner function.

We consider the problem of determining the best pos-
sible bounds on the integral of the Wigner function over
a given subregion of the phase plane of any system with
1 degree of freedom. We show for any subregion of a
rather general type that this problem reduces to the prob-
lem of finding the greatest and least eigenvalues of a Her-
mitian Fredholm integral operator corresponding to that
subregion. The problem is found to be exactly solvable
for any elliptical or annular subregion, and the bounds are
given explicitly in the case of the ellipse. These best pos-
sible bounds provide new information about the structure
of the Wigner function, differing from known results such
as best possible bounds (7) on the values of the Wigner
function itself, bounds on integrals of powers of the func-
tion [11], or bounds on various moments of the function
[12]. In particular, the new bounds determine the degree
to which the integral of any Wigner function over an ellip-
tical subregion of the phase plane can lie outside the inter-
val �0, 1� which applies to classical densities. In principle,
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they therefore provide checks on experiments of the type
to which we have referred, because they must be respected
by any measured quasiprobability distribution consistent
with quantum mechanics.

As we shall show, appropriately chosen oscillator
stationary states (or single frequency light modes) lead
theoretically to the exact attainment of these upper and
lower bounds. Such states are perhaps the easiest to
establish experimentally, and it is just such states for
which quasiprobability distributions have been measured
in some of the experiments mentioned above [6].

In what follows, we consider systems with 1 degree of
freedom, with a Cartesian coordinate q and its conjugate
momentum p . Our results refer to the Wigner function
considered at a particular instant, and are therefore inde-
pendent of any particular dynamics. We work in dimen-
sionless variables. Appropriate dimensional factors will
appear in what follows if each coordinate q there is re-
placed by q�L, each momentum p by Lp�h̄, each wave
function c by L1�2c, each phase space area A by A�h̄,
and each Wigner function W by h̄W , where L is a suit-
able constant with dimensions of a length.

Given a normalized wave function c corresponding to
a pure state jc�, the Wigner function is defined as

Wc �q, p� �
1
p

Z `

2`
c��q 1 x�c�q 2 x�ei2px dx . (1)

Then [1]

Z
G

Wc dq dp � 1 ,
Z

G
�Wc �2 dq dp �

1
2p

, (2)

where G denotes the �q, p� phase plane.
For a mixed state, the density operator r is positive

definite and Hermitian with unit trace, and typically can
be resolved in the form

r �
X

i

pijci� �cij , pi . 0 ,
X

i

pi � 1 ,

(3)
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where the states jci� are orthonormal. The corresponding
Wigner function has the form

Wr �
X

i

piWci , (4)

where Wci is the Wigner function corresponding to the
pure state jci�. More generally, the sum in (3) and (4)
could be replaced in part or whole by an integral, but
this does not significantly affect the argument of the next
paragraph.

It follows from (3) and (4) that any bound on the
Wigner function, or on its integral over a given subregion
S of G, must hold for all possible mixed states if it holds
for all possible pure states. For example, if

Z
S

Wc�q, p� dq dp . L for all c , (5)

then for any r as in (3),Z
S

Wr�q, p� dq dp �
X

i

pi

Z
S

Wci �q, p� dq dp

.
X

i

piL � L . (6)

Since a pure state can be regarded as a limiting case of
a mixed state, it then follows that best possible upper
and lower bounds on the Wigner function or its integral,
when considered over all pure states, must also be best
possible upper or lower bounds when considered over all
mixed states, although a bound that is attainable over pure
states may not in general be attainable over mixed states.
Bearing this in mind, we restrict attention in what follows
to pure states.

Best possible bounds on the Wigner function itself are
known [2]:

2
1
p

# Wc �q, p� #
1
p

(7)

for all normalized c , for all �q, p� [ G. It is easily seen
that Wc � 61�p at the point �q, p� if and only if

c�q 2 x�eipx � 6c�q 1 x�e2ipx for all x . (8)

The problem of interest here is to find best possible
bounds on the “quasiprobability functional” correspond-
ing to the subregion S, defined as

QS�Wc� �
Z

S
Wc �q, p� dq dp

�
Z

G
xS�q, p�Wc �q, p� dq dp , (9)

where xS is the function with the value 1 on S, and the
value 0 on the complement of S.

It follows at once from (7) and (9) that
2
AS

p
# QS�Wc � #

AS

p
, (10)

where AS �
R

S dq dp is the area of S.
In order to obtain stronger bounds than (10), recall that

each real-valued function T �q, p� on G can be associated
with a Hermitian operator T̂ such that

�c , T̂c� �
Z

G
T �q, p�Wc�q, p� dq dp , (11)

where �c1, c2� is the usual scalar product of wave
functions. Here T̂ can always be written as a Fredholm
integral operator,

�T̂c� �x� �
Z `

2`
KT �x, y�c� y� dy , (12)

with Hermitian kernel given in terms of the real-valued
function T �q, p� as

KT �x, y� �
1

2p

Z `

2`
T ��x 1 y��2, p� eip�x2y� dp . (13)

Consider now the case when T �q, p� � xS�q, p�.
Comparison of (9) and (11) shows that

QS�Wc � � �c , K̂Sc� , (14)

�K̂Sc� �x� �
Z `

2`
KS�x, y�c� y� dy , (15)

KS�x, y� �
1

2p

Z `

2`
xS��x 1 y��2, p�eip�x2y� dp .

(16)

It follows at once from (14) that the extremal values
of QS�Wc� are determined by the eigenvalue problem
K̂Sc � lc with K̂S as in (15). In particular,

infQS � lmin , supQS � lmax , (17)

where lmin and lmax are the least and greatest eigenvalues
of K̂S , respectively (or more generally, the infimum and
supremum of the spectrum of K̂S). Thus the problem of
interest now becomes the determination of lmin and lmax.

In order to proceed, suppose that the subregion S , G

has the general form shown in Fig. 1.
Here F1 and F2 are real-valued functions defined

for b # q # c, and satisfying F1� b� � F2� b�, F1�c� �
F2�c�, and F2�q� $ F1�q� for b , q , c. Each function
need only be piecewise continuous, and b � 2` and/or
c � ` is allowed. For such a subregion, the characteristic
function has the form

xS�q, p� �

Ω
1 b , q , c , F1�q� , p , F2�q� ,
0 otherwise ,

(18)
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FIG. 1. A typical region S in the phase plane.

and the kernel (16) becomes

KS�x, y� �
1

2p

Z F2�x1y�2�

F1�x1y�2�
eip�x2y� dp

�
ei�x2y�F2�x1y�2� 2 ei�x2y�F1�x1y�2�

2pi�x 2 y�
, (19)

for 2b , �x 1 y� , 2c, and 0 otherwise. Note that the
singularity at x � y is only apparent. Then (15) becomes

�K̂Sc� �x� �
Z 2c2x

2b2x

ei�x2y�F2�x1y�2� 2 ei�x2y�F1�x1y�2�

2pi�x 2 y�

3 c� y� dy . (20)

More generally, the subregion S may consist of several
nonintersecting parts S1, S2, . . . of the same general type,
even on overlapping q intervals. It is easily seen that in
such a case K̂S � K̂S1 1 K̂S2 1 · · · However, in general
�K̂S1 , K̂S2� fi 0, etc., so that the bounds associated with
different subregions cannot be added.

Note also that the extremal values of QS and QS0

are the same if S is transformed into S0 by a canonical
transformation of G of the form

q0 � aq 1 bp 1 g , p0 � mp 1 nq 1 r , (21)

where a, b, g, m, n, and r are real constants satisfying
am 2 bn � 1. In particular, the case of any circular or
elliptical region of area pa2 can be reduced to the case of
a circular disk of radius a, centered at the origin.

In this case, the operator K̂S (let K̂a denote it now) is
given from (20) by

�K̂ac� �x� �
Z 2a2x

22a2x

sin��x 2 y�
p

a2 2 �x 1 y�2�4 �
p�x 2 y�

3 c� y� dy , (22)

for 2` , x , `, and it is not hard to check that K̂a

commutes with the simple harmonic oscillator Hamilton-
3760
ian operator Ĥ defined by

Ĥ c�x� � 2
d2c�x�

dx2 1 x2c�x� . (23)

This is explained by the fact that Ĥ generates transfor-
mations of the wave function corresponding to rotations
in the phase plane, which leave the disk invariant. It fol-
lows that for every value of a the eigenfunctions of K̂a

are the oscillator eigenfunctions

cn�x� � Hn�x�e2x2�2 , n � 0, 1, . . . , (24)

where Hn is the Hermite polynomial [13].
According to (14), the eigenvalue ln�a� of K̂a corre-

sponding to the eigenfunction (24) must equal the total
quasiprobability on the disk of radius a, as determined by
the Wigner function Wn (say) corresponding to that eigen-
function. Since it is known [2,12] that

Wn�q, p� � �21�np21Ln�2�p2 1 q2��e2�p21q2� , (25)

where Ln is the Laguerre polynomial [13], it follows that

ln�a� � �21�n
Z a2

0
Ln�2u� e2u du . (26)

Thus l0�a� � 1 2 e2a2
, l1�a� � 1 2 �1 1 2a2�e2a2

,
l2�a� � 1 2 �1 1 2a4�e2a2

, l3�a� � 1 2 �1 1 2a2 2

2a4 1
4
3a6�e2a2

, etc.
In summary,

Z 2a2x

22a2x

sin��x 2 y�
p

a2 2 �x 1 y�2�4 �
p�x 2 y�

cn� y� dy

� ln�a�cn�x� , (27)

with cn as in (24) and ln as in (26).
Figure 2 shows the graphs of ln versus a for n �

0, 1, 2, 3, and also the graphs of lmax and lmin (bold
lines). Note that lmax�a� � l0�a� � 1 2 e2a2

, whereas
the graph of lmin has the peculiar scalloped shape shown,
because lmin�a� � l1�a� for 0 # a , a1, lmin�a� �
l2�a� for a1 # a , a2, etc., where a1 is the greatest
value of a at which l1�a� � l2�a�, a2 is the greatest
value of a at which l2�a� � l3�a�, etc. Thus a1 � 1,

a2 �
q

�3 1
p

3��2, etc.
With the introduction of the appropriate dimensional

factors, the result is that the integral of any pure-state or
mixed-state Wigner function over any circular or elliptical
region with area pa2h̄ in the phase plane lies in the
interval �lmin�a�, lmax�a��, in contrast to the integral of
any classical density, which lies in �0, 1�. According
to quantum mechanics, any quasiprobability distribution
determined by quantum tomography (in particular) is
described by a Wigner function [8–10]. For such a
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FIG. 2. Left to right: graphs of ln for n � 0, 1, 2, 3, and also
of lmax, lmin (bold lines).

distribution, the quasiprobability on disks of various radii,
centered on regions where the distribution is most
negative, for example, could be estimated and checked
for consistency against the theoretical bounds. Of course,
experimental data are inevitably subject to noise for
various reasons. While there are known techniques to
allow for noise in the reconstruction of densities from
more primitive data [8,14], this would obviously limit the
power of the proposed check. A more subtle complication
is that reconstruction algorithms may invoke quantum
mechanical arguments [8–10], and any check would be
satisfied trivially in a given case if these arguments forced
a reconstructed density to satisfy the theoretical bounds.
Any given reconstruction algorithm would have to be
analyzed carefully in this regard to ensure that a check
was meaningful.

If these difficulties could be overcome, might the pro-
posed check be elevated to the level of a test of quantum
mechanics itself? The assumptions underlying the theory
of the Wigner function are very few: the linear vector space
of states, the Born interpretation, and the conjugate rela-
tions between coordinates and momenta. However, quan-
tum mechanics has been so well tested at the energy scales
of the present experiments that any violations, if indeed
there are any, must surely be exceedingly small, and very
probably beyond present capabilities of resolution amidst
noise.

Eigenvalue problems corresponding to other shapes such
as squares and triangles are easily formulated, but do
not seem to be exactly solvable. They could be tackled
numerically. Exact results for disks can be extended to the
case of an annular region (and more generally the case of
several concentric annuli), because the operators K̂a com-
mute for different a, and have common eigenfunctions.
This may be particularly useful in checking distributions
determined by the “ring method” [6].
These ideas can be extended to systems with more
degrees of freedom, and to systems with spin.

Thanks are due to J. A. Belward, R. Chakrabarti, G. A.
Chandler, D. Ellinas, W. P. Schleich, and referees of a
preliminary version for helpful comments.
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