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Thermodynamic Limit from Small Lattices of Coupled Maps
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We compare the behavior of a small truncated coupled map lattice with random inputs at the
boundaries with that of a large deterministic lattice essentially at the thermodynamic limit. We
find exponential convergence for the probability density, predictability, power spectrum, and two-
point correlation with increasing truncated lattice size. This suggests that spatiotemporal embedding
techniques using local observations cannot detect the presence of spatial extent in such systems and
hence they may equally well be modeled by a local low dimensional stochastically driven system.
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Observation plays a fundamental role throughout all o
physics. Until this century, it was generally believed tha
if one could make sufficiently accurate measurements
a classical system, then one could predict its future ev
lution for all time. However, the discovery of chaotic be
havior over the last 100 years has led to the realization th
this was impractical and that there are fundamental limi
to what one can deduce from finite amounts of observe
data. One aspect of this is that high dimensional dete
ministic systems may in many circumstances be indisti
guishable from stochastic ones. In other words, if we hav
a physical process whose evolution is governed by a lar
number of variables, whose precise interactions area priori
unknown, then we may be unable to decide on the basis
observed data whether the system is fundamentally det
ministic or not. This has led to an informal classification
of dynamical systems into two categories: low dimension
deterministic systems and all the rest. In the case of t
former, techniques developed over the last two decades
low the characterization of the underlying dynamics from
observed time series via quantities such as fractal dime
sions, entropies, and Lyapunov spectra [1]. In the case
high dimensional and/or stochastic systems, on the oth
hand, relatively little is known about what information can
be extracted from observed data, and this topic is curren
the subject of intense research.

Many high dimensional systems have a spatial exte
and can best be viewed as a collection of subsystems
different spatial locations coupled together. The main ai
of this Letter is to demonstrate that using data observ
from a limited spatial region we may be unable to distin
guish such an extended spatiotemporal system from a lo
low dimensional system driven by noise. Since the latt
is much simpler, it may in many cases provide a prefe
able model of the observed data. On one hand, this su
gests that efforts to reconstruct by time delay embeddin
the spatiotemporal dynamics of extended systems may
misplaced, and we should instead focus on developi
methods to locally embed observed data. A prelimina
framework for this is described in [2]. On the other hand
these results may help to explain why time delay reco
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struction methods sometimes work surprisingly well o
data generated by high dimensional spatiotemporal s
tems, wherea priori they ought to fail: in effect such
methods see only a “noisy” local system, and providing
reasonably low “noise level” can still perform adequately
Overall we see that we add a third category to the abo
informal classification, namely, that of low dimensiona
systems driven by noise, and we need to adapt our rec
struction approach to take account of this.

We illustrate our results in the context of coupled ma
lattices (CML’s) which are a popular and convenient par
digm for studying spatiotemporal behavior [3]. We con
sider in particular a one-dimensional array of diffusivel
coupled logistic maps whose dynamics has been exte
sively studied. However, we believe that the resul
presented in this Letter hold for other more general sp
tiotemporal systems provided their coupling dynamics
localized. The dynamics of the coupled logistic lattice un
der consideration is given by

xt11
i � �1 2 ´�f�xt

i � 1
´

2
�f�xt

i21� 1 f�xt
i11�� , (1)

wherext
i denotes the discrete time dynamics at discrete l

cationsi � 1, . . . , L, ´ [ �0, 1� is the coupling strength,
and the local mapf is the fully chaotic logistic map
f�x� � 4x�1 2 x�. Recent research has focused on th
thermodynamic limit,L ! `, of such dynamical systems
[4]. Many interesting phenomena arise in this limit, in
cluding the rescaling of the Lyapunov spectrum [5] an
the linear increase in Lyapunov dimension [6]. The phys
cal interpretation of such phenomena is that a long arr
of coupled systems may be thought of as a concatenat
of small-size subsystems that evolve almost independen
from each other [7]. As a consequence, the limiting b
havior of an infinite lattice is extremely well approximated
by finite lattices of quite modest size. In our numerica
work, we thus approximate the thermodynamic limit by
lattice of sizeL � 100 with periodic boundary conditions.

Numerical evidence [2] suggests that the attractor
such a system is high dimensional (Lyapunov dimensio
approximately 70). If working with observed data i
is clearly not feasible to use an embedding dimensio
© 1999 The American Physical Society 3633
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of that order of magnitude. On the other hand, it is
possible [2] to make quite reasonable predictions of the
evolution of a site using embedding dimensions as small
as 4. This suggests that a significant part of the dynamics
is concentrated in only a few degrees of freedom and
that a low dimensional model may prove to be a good
approximation of the dynamics at a single site. In order
to investigate this we introduce the following truncated
lattice. Let us take N sites (i � 1, . . . , N) coupled as in
Eq. (1) and consider the dynamics at the boundaries xt

0 and
xt

N11 to be produced by two independent driving inputs.
The driving input is chosen to be white noise uniformly
distributed in the interval �0, 1�. We are interested in
comparing the dynamics of the truncated lattice to the
thermodynamic limit case.

We begin the comparison between the two lattices by
examining their respective invariant probability density at
the central site (if the number of sites is even, either of
the two central sites is equivalent). For a semianalytic
treatment of the probability density of large arrays of
coupled logistic maps see Lemaı̂tre et al. [8]. Let us
denote by r`�x� the single site probability density in the
thermodynamic limit and rN �x� the central site probability
density of the truncated lattice of size N . We compare the
two densities in the L1 norm by computing

Dr�N� �
Z 1

0
jr`�x� 2 rN �x�j dx (2)

for increasing N . The results are summarized in Fig. 1a
where log�Dr�N�� is plotted for increasing N for differ-
ent values of the coupling. The figure suggests that the
difference between the densities decays exponentially as
N is increased (see straight lines for guidance). Similar
results were obtained for intermediate values of the cou-
pling parameter. The densities used to obtain the plots
in Fig. 1a were estimated by a box counting algorithm
by using 100 boxes and 108 points (102 different orbits
with 106 iterations each). The maximum resolution typi-
cally achieved by using these values turns to be around
Dr�N� � exp�26.5� � 0.0015. This explains the satura-
tion of the distance corresponding to ´ � 0.2. For ´ �
0.8 the saturation would occur for approximately N �

FIG. 1. Distance between (a) the probability density and
(b) the power spectra in the thermodynamic limit and its
truncated lattice counterpart as the number of sites N in the
latter is increased.
3634
35. Nonetheless, densities separated by a distance of ap-
proximately exp�23� � 0.05 (see horizontal threshold in
Fig. 1a), or less, capture almost all the structure. There-
fore, one recovers the essence of the thermodynamic limit
probability density with a reasonable small truncated lat-
tice (see Fig. 2a).

Next we compare temporal correlations in the truncated
lattice with those in the full system. Denote by S`�v� the
power spectrum of the thermodynamic limit and SN �v� its
counterpart for the truncated lattice. Figure 1b shows the
difference DS�N� in the L1 norm between the power spec-
tra of the truncated lattice and of the thermodynamic limit
for ´ � 0.2 and 0.8 (similar results were obtained for inter-
mediate values of ´). As for the probability density, the
power spectra appear to converge exponentially with the
truncated lattice size. Here the saturation due to finite com-
puter resources is reached around exp�212� � 1026. Our
results were obtained by averaging 106 spectra (jDFTj2)
of 1024 points each. In Fig. 2b we depict the compari-
son between the spectra corresponding to the thermo-
dynamic limit and to the truncated lattice. As can be
observed from the figure, the spectra for the truncated lat-
tice give a good approximation to the thermodynamic limit.
The distance corresponding to these plots lies well below
DS�N� , exp�27.5� � 5 3 1024. The convergence of
the power spectrum is much faster than the one for the
probability density (compare both scales in Fig. 1).

To complete the comparison picture we compute the
two-point correlation [9]

C�j, t� � ��uy	 2 �u	 �y	����u2	 2 �u	2� , (3)

where u � xt
i and y � xt1t

i1j . Thus, C�j, t� corresponds
to the correlation of two points in the lattice dynamics
separated by j sites and t time steps. To obtain the
two-point correlation for the truncated lattice we consider
the two points closest to the central site separated by j.
We then compute DCj,t�N� defined as the absolute value
of the difference of the correlation in the thermodynamic
limit with that obtained using the truncated lattice of size
N . In Fig. 3 we plot DC1,0�N� as a function of N for
´ � 0.2 and 0.8. For ´ � 0.2, due to limited accuracy of

FIG. 2. Approximating (a) the probability density and (b) the
power spectra of the thermodynamic limit (thick lines) using
a truncated lattice (thin lines). (i) ´ � 0.2 and N � 4 and
(ii) ´ � 0.8 and N � 10.
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FIG. 3. Difference of the two-point correlation between the
truncated lattice and the thermodynamic limit for two neighbors
at the same iteration [C�j � 1, t � 0�].

our calculations, the saturation is reached around N � 10.
Nonetheless, it is possible to observe an exponential de-
crease (straight lines in the linear-log plot) before the
saturation. For larger values of ´ the exponential conver-
gence is more evident (see Fig. 3b). Similar results were
obtained for intermediate ´ values. Note that because the
correlation oscillates, it is not possible to have a point by
point exponential decay for DC1,0�N�; however, the upper
envelope clearly follows an exponential decay (see straight
lines for guidance). Similar results were obtained for dif-
ferent values of �j, t�.

The above comparisons were carried out by using the
data produced by the known system (1). Often, in practice,
one is deprived of the evolution laws of the system. In
such cases, the only way to analyze the system is by using
time series reconstruction techniques. This is particularly
appropriate when dealing with real spatiotemporal systems
where, typically, only a fraction of the set of variables
can be measured or when the dynamics is only indirectly
observed by means of a scalar measurement function. In
the following we suppose that the only available data are
provided by the time series of a set of variables in a small
spatial region. We would like to study the effects on
predictability when using a truncated lattice instead of the
thermodynamic limit.

Instead of limiting ourselves to one-dimensional time
series (temporal embedding) we use a mix of temporal and
spatial delay embeddings (spatiotemporal embedding) [2].
Therefore we use the delay map

Xt
i � �yt

i , y
t
i21, . . . , yt

i2�ds21�� , (4)

whose entries yt
i � �xt

i , x
t21
i , . . . , x

t2�dt21�
i � are time-delay

vectors and where ds and dt denote the spatial and tem-
poral embedding dimensions. The overall embedding di-
mension is d � dsdt . The delay map (4) is used to predict
xt11

i . An obvious choice of spatiotemporal delay would be
a symmetric one such as Xt

i � �xt
i21, xt

i , xt
i11�. However,

this would give artificially good results (for both the full
and truncated lattices) since xt11

i depends only on these
variables [cf. (1)]. This is an artifact of the choice of cou-
pling and observable and could not be expected to hold
in general. Therefore, we use the delay map (4) in order
to “hide” some dynamical information affecting the future
state and hence make the prediction problem a nontrivial
one. The best one-step predictions using the delay map
(4) are typically obtained for ds � dt � 2 [2]. Here we
use the two cases �ds, dt� � �2, 1� and �ds, dt� � �2, 2�; al-
most identical results are obtained for higher dimensional
embeddings 
�ds, dt� [ �1, 4�2�.

Denote by E�N� the normalized root mean square error
for the one-step prediction using the delay map (4) at the
central portion of the truncated lattice of size N . The
comparison between E�N� and E�N ! `� is shown in
Fig. 4 where we plot the absolute value of the normalized
error difference

DE�N� � j�E�N� 2 E�`���E�`�j (5)

for increasing N and for different spatiotemporal embed-
dings and coupling strengths. The figure shows a rapid
decay of the prediction error difference for small N and
then a saturation region where the limited accuracy of our
computation hinders any further decay. For ´ � 0.2 the
drop to the saturation region is almost immediate while for
the large coupling value ´ � 0.8 the decay is slow enough
to observe an apparently exponential decay (see fitted
line corresponding to ds � dt � 2 for N � 1, . . . , 20),
thereafter the saturation region is again reached. For in-
termediate values of ´, the saturation region is reached
between N � 5 and 20 (results not shown here). Before
this saturation it is possible to observe a rapid (exponen-
tial) decrease of the normalized error difference. This
corroborates again the fact that it seems impossible in
practice to differentiate between the dynamics of the rela-
tively small truncated lattice and the thermodynamic limit.

All the above results were obtained from the simula-
tion of a truncated lattice with white noise inputs at the
boundaries. Other kinds of inputs did not change our ob-
servations in a qualitative way. It is worth mentioning
that a truncated lattice with random inputs with the same
probability density as the thermodynamic limit ���r`�x����

FIG. 4. Normalized one-step prediction error difference (5)
between a truncated lattice and the thermodynamic limit for
two spatiotemporal embeddings [�ds, dt� � �2, 1� and �ds, dt� �
�2, 2�] and different couplings strengths.
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produces approximatively the same exponential decays as
above with just a downward vertical shift (i.e., same decay
but smaller initial difference).

The numerical results shown in this Letter correspond
to locally coupled map lattices. It is clear that the na-
ture of the coupling plays an important role in the phe-
nomenology hereby reported. In order to check the effects
of including a more global coupling we also studied the
dynamics of large lattices of coupled maps with an ex-
ponentially decreasing coupling: xt11

i � ��1 2 b���1 1

b��
P`

k�2` bji2kjf�xt
i2k�, where b [ �0, 1� measures the

decay of the coupling. We found that for small b (b ,

0.3) it is possible to model the dynamics at a single site for
the thermodynamic limit with a relatively small truncated
lattice. However, as the coupling becomes more global for
larger values of b, a subtle collective coherence emerges
and we were unable to obtain promising results from ap-
proximating a large lattice by a truncated one. It is well
known that globally coupled maps are prone to a subtle
collective behavior even though coherence of individual
sites is not present [10]. In such cases, the idea of replac-
ing a potentially infinite lattice with a truncated lattice with
random inputs breaks down. In particular, the violation of
the law of large number reported in [10] will not occur for
the truncated lattice.

The properties of the thermodynamic limit of a diffu-
sively coupled logistic lattice we considered here were
approximated remarkably well (exponentially close) by a
truncated lattice with random inputs. Therefore, when ob-
serving data from a limited spatial region, given a finite
accuracy in the computations and a reasonably small trun-
cated lattice size, it would be impossible to discern any
dynamical difference between the thermodynamic limit lat-
tice and its truncated counterpart. The implications from
a spatiotemporal systems time series perspective are quite
strong and discouraging: even though in theory one should
be able to reconstruct the dynamics of the whole attractor
of a spatiotemporal system from a local time series (Takens
theorem [11]), it appears that due to the limited accuracy it
would be impossible to test for definite high-dimensional
determinism in practice.

The evidence presented here suggests the impossibility
of reconstructing the state of the whole lattice from lo-
calized information. It is natural to ask whether we can
do any better by observing the lattice at many (possibly
3636
all) different sites. While in principle this would yield an
embedding of the whole high dimensional system, it is un-
likely to be much more useful in practice. This is because
the resulting embedding space will be extremely high di-
mensional and any attempt to characterize the dynamics or
fit a model will suffer from the usual “curse of high di-
mensionality.” In particular, with any realistic amount of
data, it will be very rare for typical points to have close
neighbors. Hence, for instance, predictions are unlikely to
be much better than those obtained from just observing a
localized part of the lattice.

If one actually wants to predict the behavior at many
or all sites, our results suggest that the best approach is to
treat the data as coming from a number of uncoupled small
noisy systems [12], rather than a single large system. Of
course, if one has good reason to suppose that the system is
spatially homogeneous, one should fit the same local model
at all spatial locations, thereby substantially increasing the
amount of available data.
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