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Information entropy and Zpif’s law in the field of information theory have been used for studying
disassembly of nuclei in the framework of the isospin dependent lattice gas model and the mol
dynamical model. We found that the information entropy in the event space is maximum at the p
transition point and the mass of the cluster shows exactly inversely to its rank, i.e., Zpif’s law app
Both novel criteria are useful in searching the nuclear liquid gas phase transition experimentall
theoretically.
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Hot nuclei can be formed in energetic heavy ion colli
sions (HIC) and may be highly excited. They deexcite b
different decay modes, such as multifragmentation. E
perimentally, this kind of multifragment emission was ob
served to evolve with beam energy (excitation energy,
nuclear temperature, . . .). Multiplicity,Nimf, of interme-
diate mass fragment (IMF) rises with the beam energ
reaches a maximum, and finally falls to lower value. Thi
phenomenon of the rise and fall ofNimf may be related to
the liquid gas phase transition in nuclear matter [1]. Th
onset of multifragmentation probably indicates the coex
istence of liquid and gas phases. The mass distributi
of IMF distribution can be expressed as a power law wit
parametert. The minimum oft, tmin, occurs when the
liquid gas phase transition takes place [2]. However,tmin
can also reveal at supercritical densities along the Kerté
line [3] and at some subcritical densities at lower temper
ture [4]. So it is not possible to determine the phase tra
sition only fromNimf andtmin.

On the other hand, experimentalists measured the n
clear caloric curves, i.e., the relationship between nucle
temperature and the excitation energy. He-Li isotopic tem
perature from the Albergo thermometer [5] for projectile
like Au spectators seems to exhibit a temperature plate
in the excitation energy range of 3 to 10 MeV�u [6]. This
plateau was taken as an indication for a first order nucle
liquid gas phase transition. However, due to the changin
mass of Au spectators with excitation energy and the sid
feeding effect to measured He-Li isotopic temperatur
this conclusion is questionable [7]. Nuclear caloric curve
were also surveyed by several groups [8]. However, unfo
tunately, the sharp signature of the liquid gas phase tran
tion in macroscopic systems may be smoothed and blurr
due to the small numbers of nucleons in nuclei, and/
the difficulty to perform a direct comparison between th
measured “apparent” temperature and the “real” tempe
ture interferes in obtaining the real nuclear caloric curv
These factors hamper the reaching of a definite conclusi
on liquid gas phase transition in nuclei.
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The extraction of critical exponents and the study
critical behavior in finite-size systems were attempted
[9] and were followed by controversial debates [10]. I
this context, it is necessary and meaningful to search
some novel signatures to characterize the nuclear liquid
phase transition in order to guide the experimental analy
and theoretical predictions.

In this Letter, we will introduce information entropy
[11], H, and Zpif’s law [12] into the diagnosis of a nuclea
liquid gas phase transition. The information entropy w
defined by Shannon in information theory. Originally,
measures the “amount of information” which is containe
in messages sent along a transmission line. It can be
pressed as follows:

H � 2
X

i

pi ln�pi� , (1)

where pi is a normalized probability, and
P

i pi � 1.
Jaynes proposed that a very general technique for disc
ering the least biased distribution of thepi consists in
the maximization of the ShannonH entropy, subject to
whatever constraints onpi are appropriate to the particu-
lar situation. The maximization ofH was thus put for-
ward as a general principle of statistical inference—o
which could be applied to a wide variety of problems i
economics, engineering, and many other fields, such
quantum phenomena [11]. In high energy hadron col
sions, multiparticle production proceeds on the maximu
stochasticity, i.e., they should obey the maximum entro
principle. This kind of stochasticity can be also quantifie
via the information entropy which has been shown to b
a good tool to measure chaoticity in the hadron decayi
branching process [13]. In different physical condition
information entropy can be expressed with different st
chastic variables. In this work on HIC, we definepi as
the event probability of having “i” particles produced, i.e.,
�pi� is the normalized probability distribution of total mul-
tiplicity, and the sum is taken over whole�pi� distribution.
This emphasis is on the event space rather than the ph
© 1999 The American Physical Society 3617
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space. As shown below, this kind of information entropy
[14] can be taken as a method to determine nuclear liquid
gas phase transition.

Zpif’ s law [12] has been known as a statistical phenome-
non concerning the relation between English words and
their frequency in literature in the field of linguistics. The
law states that, when we list the words in the order of de-
creasing population, the frequency of a word is inversely
proportional to its rank [12]. This relation was found not
only in linguistics but also in other fields of sciences. For
instance, the law appeared in distributions of populations
in cities, distributions of income of corporations, distribu-
tions of areas of lakes, and cluster-size distribution in the
percolation process [15]. In this Letter, Zpif’ s law will
be tested for the fragment mass distribution and it is evi-
denced to be a factor in characterizing the phase transition.

The tools we will use here are the isospin dependent lat-
tice gas model (LGM) and the molecular dynamical (MD)
model. The lattice gas model was developed to describe
the liquid gas phase transition for an atomic system by
Lee and Yang [16]. The same model has already been ap-
plied to nuclear physics for isospin symmetrical systems
in the grand canonical ensemble [17] with a sampling of
the canonical ensemble [3,4,18–22], and also for isospin
asymmetrical nuclear matter in the mean field approxi-
mation [23]. In addition, a classical molecular dynamical
model is used to compare its results with the results of the
lattice gas model. Here we will make a brief description
for the models.

In the lattice gas model, A (� N 1 Z) nucleons with an
occupation number s, which is defined s � 1 (21) for a
proton (neutron) or s � 0 for a vacancy, are placed on the
L sites of lattice. Nucleons in the nearest neighboring sites
interact with an energy esisj . The Hamiltonian is written
as E �

PA
i�1�P2

i �2m� 2
P

i,j esisj sisj . The interaction
constant esisj is chosen to be isospin dependent and be fixed
to reproduce the binding energy of the nuclei [20]:

enn � epp � 0 MeV ,

epn � 25.33 MeV .
(2)

A three-dimensional cubic lattice with L sites is used.
The freeze-out density of the disassembling system is
assumed to be rf � A

Lr0, where r0 is the normal nuclear
density. The disassembly of the system is to be calculated
at rf , beyond which nucleons are too far apart to interact.
Nucleons are put into a lattice by Monte Carlo Metropolis
sampling. Once the nucleons have been placed, we also
ascribe to each of them a momentum by Monte Carlo
samplings of Maxwell-Boltzmann distribution.

Once this is done, the LGM immediately gives the
cluster distribution using the rule that two nucleons are
part of the same cluster if P2

r �2m 2 esisj sisj , 0. This
method is similar to the Coniglio-Klein’ s prescription [24]
in condensed matter physics and was shown to be valid
in LGM [3,4,19,21]. To calculate clusters using MD, we
propagate the particles from the initial configuration for a
3618
long time under the influence of the chosen force. The
form of the force is chosen to be also isospin dependent in
order to compare with the results of LGM. The potential
for unlike nucleons is

ynp�r� �r�r0 , a� � C�B�r0�r�p 2 �r0�r�q�

3 exp

µ
1

�r�r0� 2 a

∂
,

ynp�r� �r�r0 . a� � 0 ,

(3)

where r0 � 1.842 fm is the distance between the cen-
ters of two adjacent cubes. The parameters of the po-
tentials are p � 2, q � 1, a � 1.3, B � 0.924, and
C � 1966 MeV. With these parameters, the potential is
minimum at r0 with the value 25.33 MeV, is zero when
the nucleons are more than 1.3r0 apart, and becomes
strongly repulsive when r is significantly less than r0.
The potential for like nucleons is written as

ypp�r� �r , r0� � ynp�r� 2 ynp�r0� ,

ypp�r� �r . r0� � 0 .
(4)

The system evolves with the above potential. At asymp-
totic times the clusters are easily recognized. Observables
based on the cluster distribution in both models can now
be compared. In the case of proton-proton interactions,
the Coulomb interaction can also be added separately, and
it can be compared with the case without Coulomb effects.

In this Letter, we choose the medium size nuclei 129Xe
as an example. In most cases, rf is chosen to be 0.38r0,
since the experimental data can be best fitted by rf be-
tween 0.3r0 and 0.4r0 in previous LGM calculations
[19,25], which corresponds to 73 cubic lattice. In addition,
0.18r0, corresponding to 93 cubic lattice and 0.60r0, cor-
responding to 63 cubic lattice of rf , are also taken to com-
pare and check the results with different rf values in the
LGM case. 1000 events were simulated for each combina-
tion of T and rf which ensures enough statistics for results.

In order to check the phase transition behavior in LGM
and MD, we will first show the results of some physical
observables, namely, the effective power-law parameter
t, the second moment of the cluster distribution S2, and
the multiplicity of intermediate mass fragments Nimf, for
the disassembly of 129Xe (Fig. 1). These observables
were shown to be good indicators of a liquid gas phase
transition, as shown in Ref. [20]. The extreme values of t,
Nimf, and S2 occur at the same temperature, indicating the
onset of the phase transition, for each calculation case. For
the LGM case, the phase transition temperature increases
with the freeze-out density; for the MD case, a slight
small transition temperature is obtained when Coulomb
force is ignored. It becomes much lower in the case of
Coulomb interaction due to its long range repulsion. A
similar phenomenon has been explored in a previous study
[20]. However, the aim of this Letter is to take the above
transition temperatures as references to search for novel
signatures of liquid gas phase transition.
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FIG. 1. The effective power-law parameter t, the second
moment of the cluster distribution S2, and the multiplicity of
intermediate mass fragments Nimf, as a function of temperature
for the disassembly of 129Xe. Left panel is the LGM results
with different rf and right panel is the comparison of MD to
LGM with 0.38r0. The symbols are illustrated in the figure.

Figure 2 shows the information entropy for disassem-
bly of Xe. The information entropy exhibits a rise and
fall with temperature, which is similar to the behaviors of
Nimf and S2. The temperatures extracted from the peak
values of H are consistent with the transition temperatures
in Fig. 1, indicating that information entropy ought to be a
good diagnosis of phase transition. Physically, the maxi-
mum of H reflects the largest fluctuation of the multiplic-
ity probability distribution in the phase transition point. In
this case, it is the most difficult to predict how many clus-
ters will be produced in each event, i.e., the disorder (en-

FIG. 2. The same as Fig. 1, but for the information en-
tropy H.
tropy) of information is the largest. Generally speaking,
the larger the dispersal of multiplicity probability distribu-
tion, the higher the information entropy, and then the disor-
der of the system in the event topology. One should make
a careful distinction between this information entropy, on
the one hand, and the original thermodynamic entropy, on
the other hand [11,14]. The latter generally illustrates the
heat disorder in momentum space rather than event space
and it always increases with temperature.

Next, we will present the results for testing Zpif’ s law
in the fragment distribution. The law states that the re-
lation between the sizes and their ranks is described by
An � c�n (n � 1, 2, 3, . . .), where c is a constant, and An

is the mass of rank n in a mass list when we arrange the
clusters in the order of decreasing size. In the calcula-
tions, we averaged the masses for each rank in mass lists
of the events. Then we examined the relation between the
masses An and their ranks n with the fit of An ~ n2l in
the range of 1 # n # 10, where l is the slope parameter.
The upper panel of Fig. 3 summarizes such parameter l as
a function of temperature for LGM and MD cases. Clearly,
the value of l decreases with temperature, indicating that
the difference of mass between the different fragment ranks
is becoming smaller. When l � 1, the Zpif’ s law is satis-
fied: An ~ n21. The temperatures having Zpif’ s law for all
calculations in Fig. 3 are also consistent with the respective
transition temperatures extracted from the extreme values
of some observables in Figs. 1 and 2. Therefore Zpif’ s
law is also a good signal to phase transition. From the
statistical point of view, Zpif’ s law is related to the criti-
cal behavior or self-organized criticality [2,26], which may
be a special state with the maximum information or least
effort.

FIG. 3. The slope parameter l of the relation An to n (upper
panel) and the x2�ndf with the fit of Zpif’ s law (lower panel)
as a function of temperature. Left panel is the LGM results
with different rf and right panel is the comparison of MD to
LGM with 0.38r0. The symbols are the same as Fig. 1.
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In order to further illustrate that Zpif’ s law exists at
the phase transition point most probably, we directly fit
the rank-classified cluster distribution with Zpif’ s law and
extract the truth of the hypothesis: x2 test. The lower
panel of Fig. 3 demonstrates the x2�ndf for the An-n re-
lations at different T for different calculation cases. As
expected, there are minima of x2�ndf around the respec-
tive transition temperature, which further support Zpif’ s
law of the fragment distribution indicating a phase transi-
tion. All calculations give the same conclusions as above.

In addition, we also investigated larger systems, such
as A � 274, 500, and 830, in the LGM case to see if the
system behaves as expected in 129Xe. The results show
that the maximum of information entropy and Zpif’ s law
behavior still remain at the same phase transition tem-
perature as the one extracted from the extreme values of
t, Nimf, and S2. It illustrates that both novel criteria are
suitable as signals of phase transition in the larger A limit.

In conclusion, the information entropy and Zpif’ s law in
the field of information theory are introduced, for the first
time, into the study of the liquid gas phase transition of
nuclei in the framework of the isospin dependent lattice gas
model and the molecular dynamical model in a r-T plane.
At the point of phase transition, the information entropy
of multiplicity distribution is maximum, which indicates
that the system at this time has the largest fluctuation/
stochasticity/chaoticity in the event space. Meanwhile,
the cluster mass shows exactly inversely to its rank, i.e.,
Zpif’ s law appears. Even though both criteria are still
phenomenological, we believe that they are simple and
practicable tools to diagnose the nuclear liquid gas phase
transition in experiments and theories. We are waiting for
some data analysis on the information entropy and Zpif’ s
law in the near future.
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