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Anti—de Sitter space can be foliated by a family of nested surfaces homeomorphic to the boundary
of the space. We propose a holographic correspondence between theories living on each surface in the
foliation and quantum gravity in the enclosed volume. The flow of observables between our “interior”
theories is described by a renormalization group equation. The dependence of these flows on the
foliation of space encodes bulk geometry.
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The holographic principle [1] states that quantum grav-spreading of the fields increases @31, is moved into
ity on a manifold can be described by a theory defined orthe interior. In the CFT dual, these boundary values of
the boundary of that manifold. The simplest realizationbulk fields map onto sources smeared over a characteristic
of this principle has been in Anti—de Sitter (AdS) space,scale specified by the position of the inner boundary. Itis
which, in certain cases, can be described bycal confor-  then appropriate to integrate out CFT degrees of freedom at
mal field theory (CFT) defined on the AdS boundary [2].lengths shorter than this scale. This suggests that the inte-
The correlation functions of the CFT describe the experirior holographic theories described above are related to the
ments of an observer who prepares field configurations &FT duals of AdS spaces by coarsening transformations.
infinity and measures their amplitudes. We will demonstrate that this is the case and show that, for
A strong version of the holographic principle would any nested family of foliating surfaces for AdS, there is an
assert that quantum gravity on any volume containedRG equation describing the flow of observables in the cor-
within a manifold can be described by a theory defined omesponding series of interior holographic duals. Spacetime
the boundary of that volume. The holographic dual woulddiffeomorphisms relate foliating families and are realized
then describe experiments of an observer who preparess relations between different flows.
field configurations on the interior boundary and measures (1) Defining the inner correspondence.—We will con-
their amplitudes. sider Euclidean AdS, which is topologically a ball. Fo-
In this Letter, we address the issue of interior holo-liate AdS by a family of topologically spherical surfaces
graphic duals for AdS by adopting a Wilsonian renormal-indexed by a parameter approaching at the boundary
ization group (RG) perspective. To describe a subset adind« at the center. Led M, be any element of this fo-
a system we “integrate out” the excluded degrees of freelating family, with M, being the enclosed volume. The
dom. In general, this will induce an infinite set of interac- AdS/CFT correspondence for the boundarypat 0 is
tions in the remaining theory, making it nonlocal. In the written as [6,7]
AdS context, we foliate spacetime by surface®?, of

constant radial coordinate, with enclosed volumeM,,. e %ol = DP e SlP]
We fix the values of the field®, on 9 M, and perform Mo
the bulk path integral over the excluded volume. The re- o @O s (@)
L . R = <e oMo > = ¢ dcrr(®o) (1)
sult is a nonlocal functional o, which we treat as a
boundary contribution to the bulk action describifd,, . The two terms on the left represent the string theory path

Responses of the resulting interior path integral to variaintegral on AdS evaluated as a functional of the bound-
tions of @, describe experiments carried out by observerary data®,. On the right-hand side is the effective ac-
placed ondaM,. We identify these responses with the tion for the dual conformal field theory with sources.
correlation functions of a holographic dual defined on theThe spacetime actiof, contains both bulk and bound-
interior boundary. Related work has appeared recently imry contributions:So[®] = fmo L[D] + ]a% Bo[®o],

[3]. For some other discussions of RG equations in thavhere the boundary terms are chosen to cancel divergences
AdS and CFT context, see [4]. arising from the bulk integral (see, e.g., [8]). Upon per-
The observer at M, naturally probes the interior vol- forming the bulk path integralZo[®,] becomes a func-

ume with pointlike variations of the field®,. In the tional of ®, defined oo M,. Since the conformal factor
semiclassical limit, the bulk equations of motion tell uson the boundary of AdS actually diverges, it is convenient
that these variations turn into extended variations of théo cut off the space at some small= e, which can be
fields at infinity (see, e.g., [5] and references therein). Thisinderstood as a kind of ultraviolet regulator for the CFT
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[9]. (Wewill dwaystake e — O intheend.) We write
zdod =3 [ [1‘[ b, ¢75<bj>q>e<bj>}
n=1 el j=1

D). )

Here b are boundary coordinates and vy isthe determinant
of the induced metric on 9’ M.. The correlation functions
of the dual CFT are precisely the coefficients ¢, in the
€ — 0 limit.

We are interested in defining a suitable inner corre-
spondence between quantum gravity on M, and some
theory defined on the boundary 9 M ,,. In the field theory
limit we would like an equation analogous to (1):

e_Zp[q)/J] — fm D(I) e_Sp[‘I’] — e_SCFT((I)p). (3)

X c,(e;by,...

Consider an observer stationed on 9M,. Such an
observer can probe physics in the region M, by measur-
ing the amplitudes for various field configurations ®, to
occur. The amplitudes are given by the path integral in
the full AdS spacetime subject to the boundary condition
that & = ®, on 9 M,. It is convenient to perform the
path integral intwo steps. First, integrate over fieldsin the
excluded volume M, — M, to get anonlocal functional
of @, e “Pl= [y DO [y DO S =
I, DO e~5I?) 5[] encapsulates the physics in
M,. The virtue of first integrating over the bulk fields
in the excluded volume is that we can envision doing the
analogous procedure in the gauge theory. Roughly speak-
ing, fields @, correspond to smeared fields &, at the outer
boundary, and hence to smeared sources in the gauge the-
ory. Inthe CFT itisthen natural to form an effectiveaction
by integrating over field modes with wavelengths shorter
than the smearing length.

To compute bulk correlation functions on d M, we
perform the remaining path integral over M, to obtain
afunctional of @,

Z,[®,] = Zlfm []‘[l dbj\/y,](bj)cbp(b,-)}
n= rLj=

X c,(pibr,....b,). (4

We have obtained a one parameter set of correlation func-
tions ¢, (p;by,...,b,) indexed by p which, by construc-
tion, reduce to those in (2) as p — €. The dependence
on p is naturally interpreted as the renormalization group
evolution of the correlation functions.

Semiclassical correspondence:  In the semiclassical,
small curvature, limit the bulk path integral for the “outer
correspondence” (1) is dominated by its saddle points.
So, in the corresponding limit of the dual CFT, Eg. (1)
becomes ¢ ~5a(®0) = ¢~ Scrr(®0) - The|eft-hand side is now
simply the AdS classical action evaluated as a functional
of boundary data. To define the “inner correspondence” in
the field theory limit we simply integrated over the fields
in the excluded volume M, — M. In the semiclassical
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limit this amounts to evaluating the action for a classical
solution in the excluded volume with fields taking values
®, at the inner boundary. There is a unique solution in
the bulk with the prescribed boundary conditions, at least
in perturbation around the free limit.

We can compute the full bulk action associated with
classical solutions and express it in terms of either
the fields @, or ®,: So =3, [, [[1j=; db; X
Vye) @c(bpleq(ebr,....by) = X0 [y [T X
dbj+\y,(b;)®,(bj)]c,(p:by,...,b,). Toderivean RG
equation we must relate the correlation functions at p to
those at e. Such arelation is found by noting, as above,
that the classical fields ®. are uniquely specified by ®,,.
We display this relation in terms of a propagator,

d.(b) = /M/l VY, (b")Gep(b, b)) D, ().  (5)

The meaning of our construction: The meaning of our
construction is most easily grasped by considering two
point functions in the inner and outer theories. In the
semiclassical limit, the outer CFT two point function for
widely separated operators is computed from a classical
bulk geodesic between two boundary points. Our proce-
dure for computing inner two point functions amounts to
extending the geodesic between two interior points until
they reach the outer boundary, and adding in the action for
the excluded part of the trgjectory. Since the geodesics
spread on the way from the interior boundary to the exte-
rior, interior correlators at one separation are given by ex-
terior correlators at a larger separation. More ccgncretely,
consider AdS in Poincaré coordinates. ds* = %(dp2 +
db?). Consider a scalar field in AdS in a representation
of the conformal group with weight A. Disturbances of
this field on the AdS boundary (p = 0) propagate to the

A

surface at fixed p viathe kernel G, ~ (p2+|§7,b,lz)¢. So
a point disturbance at 9 M, grows to a coordinate size p
a oM,. Conversely, agiven point on 9 M, is affected
by fields within a patch of coordinate size p on the outer
boundary. Now imagine an observer on 9 M, who probes
the system with local sources. In terms of the original
CFT, such an observer has access only to sources which
are smeared over coordinate size p. So her experiments
can be reproduced by an effective action in which degrees
of freedom smaller than p have been integrated out—short
distance information has been lost. (If the observer can
place sources on 9 M, with arbitrary precision, al CFT
degrees of freedom must be retained. This is because the
effect of the smearing can be undone by making experi-
mentsat infinitesimal separationson M ,. But, of course,
such infinite precision experiments are beyond the valid-
ity of our supergravity analysis.) Integrating out degrees
of freedom induces an infinite series of higher derivative
terms, multiplied by powers of the dimensionful scalef. If
one tries to pass to the flat space limit by sending € — oo,
the coefficients of the higher derivative terms diverge, sig-
naling an increasingly nonlocal description.
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(2) RG flow of observables.—We will now show that
the flow of observables between our “inner” theories is
described by arenormalization group equation. Asbefore,
foliate Euclidean AdS by afamily of surfaces homeomor-
phic to the boundary, and let n* be the outward pointing
normal to this family of surfaces. Then, if the spacetime
metric is g,,, the induced metric on a given foliating
surfaceis y,, = gu» — nun,. INnan adapted coordinate
system, with p being theradial direction, the metric admits
an Arnowitt-Deser-Misner-like decomposition: g,, =
8pp dp® + vij (db' + Vidp)(db/ + V/dp),
84°/ J8pp- Using (5) we find that

Cn(p;bl,--~»bn) = -/;,7\4 |:l_[db; V')’E(b;)Gep(b;,bj):|
OIMe| j=1

.,bl). (6)

We have just learned that the observables of the inner the-
ory are precisely the “outer” CFT correlators convolved
against the kernel G.,. To make progress, consider situ-
ations where we can undo the convolution by an integra
transform. For example, if the metric on oM. is pro-
portional to the identity, the Fourier transform converts
the convolution into a product. We will therefore refer
to ¢, in the deconvolved basis as the “momentum space”
correlator &,, c,(p; K1, ..., Ky) = Gep(ky)...Gep(k,) X
¢y(e;ky,...,k,). Herethevariablesk parametrizethe de-
convolution basis. Thecorrelator ¢, (e; . . .) isindependent
of theindex p of theinterior surface. Sothe p dependence
of the inner observables is summarized by

nl‘“:

X Cﬂ(e;bi, .

d Jd ~
—calpsKky, .. k) + —InG,(k;) | X
Papc(p 1 ) [Zpap p(,)}

J
) kn) =0.
(")

Equation (7) is an RG eguation describing Wilsonian flow
of correlators in the gauge theory, in correspondence with
the observations of spacetime observers stationed on the
fixed surfaces 9 M ,.

Example: Poincaré coordinates: In Poincaré coordinates
the metric of AdS is ds? = %(dp2 + db?), and we are
interested in surfaces of fixed p. We will work out the
relation between inner and outer observables for massive
scalars. In AdS, . the operator dual to such a scalar has
dimension A, where A = ¢ + v, v = 1/d? + 4m2. To
Fourier transform both sides of (6) it is convenient to define
the inner and outer correlators in momentum space:

En(piky,....K,) = fm [l_[ dbj\/meik,-b,}
rLj=1

.by). (8)

Next, since the propagator G, approaches 6(b — b’)/

VYp (b~) ase — p, the Fourier transform with respect to b’
givesG,,(b,k) = ¢*P. Itiseasy to construct amassive

Cn(p;kl,-u

X c,(p;by,...

scalar mode solution that approaches such a plane wave on
dM,, from the complete bases provided in, e.g., Ref. [10].
The propagator is then a Bessel function, Ge,(b,k) =
(e/p)?[K,(qe€)/K,(qp)]e™ ™ with > = k - k. Using
the above propagator, we express the p dependence of
¢u(p;Kkiy,...,Kk,) in terms of Bessel functions, and then
employ a series expansion to obtain

n(A—d) 2 s
1 + F(gje?)
- P qj
chlpsky,....ky) = — S
(it ) (E) [1_[ I+ F(q/zpz)}

i
Kn), (9)

where F(z2) =3 _je_,(n)z?" — 22" > _,e,(n) 7",
We implicitly understood all along that e — 0. Since the
theory is conformally invariant, this limit yields the scal-
ing behavior &,(e;ky,....k,) = €@ D¢, (ky,...,K,)
where ¢, isfinite. Rearranging terms, the inner correlator
becomes

pa=d) [1‘[(1 + F(qu-p2))i| Cnlpiki,... . ky)
J

X 6‘,1(6;1(1, s

= ¢p(ky,.... k). (10)

First consider (¢jp) < 1forall j. Thentheinterior corre-
lators at p and p’ are related by arescaling (p/p/)" 49,
This is exactly the behavior expected for low energy cor-
relation functions in a Wilsonian effective treatment. We
argued in Sec. 1 that the observables on the surface 9 M,
in Poincaré coordinates were smeared at a scae p. A
Wilsonian treatment requires a rescaling of coordinates to
keep the numerical size of the cutoff fixed. Precisely this
effect isachieved by the Weyl factor inthemetricona M,
which keeps the proper size of the smearing fixed. Thisin
turn resultsin scaling of the correlators as we flow inwards
(to the infrared).

More generaly, since ¢ on the right-hand side of (10)
is independent of p, we have an RG equation,

ap

[Z_p a‘; In[1 + F(q,,z-pz)]}én(p;kl,...,kn) =0.

When all the momenta ¢ are small, the second term
vanishes and, as expected, we have the RG equation for
pure scaling of infrared Wilsonian correlators. Violations
of scaling appear in the second term and are suppressed at
low momenta.

Bulk field equations from CFT?. In the semiclassical
limit, the interior effective theories that we have con-
structed are related to the exterior CFT by a renormal-
ization group transformation, suggesting a direct relation
between the bulk field equations and the RG equations in
the CFT. Thisis at first surprising since the bulk field
equations are second order while the RG equations are
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first order. However, there is no rea conflict because de-
manding regularity of the bulk solutionsin Euclidean space
eliminates one solution, making the equations effectively
first order. Related observations have been made in [3].

The connection can be made more explicit by recalling
the correspondence between boundary behavior of the bulk
fields in AdS;+; and sources and operators in the gauge
theory [6,7,10—-12]. Uptoap dependent scaling, sources
correspond to the boundary values of bulk fields while
operators correspond to their radial derivatives. Schemati-
caly, ] ~®, 0 ~ pa,P. Inthe CFT, J appears as a
coupling to the gauge invariant operator O of the form
[J(b)O(b). Now consider the structure of the bulk
equation for a free scalar field of mass m: [p?a) + (1 —
d)pd, — 7{2,02 — m?D(p)e’** = 0. If we use the
relations above for J and O, we find that the field equation
takes the form

|:p % + do}@ — [dy + dk*p?]J =0. (12

Again, we are being schematic—d,, d;, and d, are con-
stants. The source J is not an independent variable since
it determines the expectation value for ©. In momentum
space, J can be expressed as O times a function of k2.
Using this, we find that (12) has the same form as (11)
withn = 1.

To make this connection precise, various issues such as
the scheme dependence of the RG equations must be con-
fronted. Nevertheless, thereis reason to hopethat thefield
equations of supergravity can be derived from the CFT via
the renormalization group. Work in this direction is in
progress.

(3) Discussion: geometry and RG flows.—We have ar-
gued that there is a natural way to define an “interior”
holographic correspondence between physics inside finite
volumes M, and a theory on the boundary oM ,. The
correlation functions of the interior theory are related to
the exterior observables by acoarsening transformation. A
given family of foliating surfaces then leads to a particular
flow of smeared observables summarized by a renormal-
ization group equation. Changing the foliation leads to a
different flow. In fact, we are learning that spacetime ge-
ometry arises in a holographic context as the geometry of
the space of RG flows.

Consider a CFT defined on aplane and afamily of theo-
ries derived from it by coarsening transformations. Con-
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cretely, let ¢ (b) beafieldin the CFT, and define coarsened
fields ¢ (p; b) by convolving ® against akernel K, which
has a characteristic scale p. As p increases from 0 to o,
we arrive at afamily of smeared theories. In some natural
sense there should be a geometry on this “stack” of theo-
ries. First of al, a coarsening transformation should be
accompanied by a rescaling of lengths, and that is imple-
mented by rescaling the metric of the smeared theories. In
addition, we would like a notion of distance or separation
between the original CFT and its cousins that depends on
the coarsening parameter p. For the class of kernéls in-
spired by AdS/CFT, we have learned that there is a natu-
ral distance, and it is given by the geodesic length between
thefixed p Poincaré surfaces. In this sense, anti—de Sitter
spaces induce a geometry on a certain class of RG flows
of the dual CFTs.
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