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Anti–de Sitter space can be foliated by a family of nested surfaces homeomorphic to the bou
of the space. We propose a holographic correspondence between theories living on each surfac
foliation and quantum gravity in the enclosed volume. The flow of observables between our “inte
theories is described by a renormalization group equation. The dependence of these flows
foliation of space encodes bulk geometry.
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The holographic principle [1] states that quantum grav
ity on a manifold can be described by a theory defined o
the boundary of that manifold. The simplest realizatio
of this principle has been in Anti–de Sitter (AdS) space
which, in certain cases, can be described by alocal confor-
mal field theory (CFT) defined on the AdS boundary [2]
The correlation functions of the CFT describe the exper
ments of an observer who prepares field configurations
infinity and measures their amplitudes.

A strong version of the holographic principle would
assert that quantum gravity on any volume containe
within a manifold can be described by a theory defined o
the boundary of that volume. The holographic dual woul
then describe experiments of an observer who prepa
field configurations on the interior boundary and measur
their amplitudes.

In this Letter, we address the issue of interior holo
graphic duals for AdS by adopting a Wilsonian renorma
ization group (RG) perspective. To describe a subset
a system we “integrate out” the excluded degrees of fre
dom. In general, this will induce an infinite set of interac
tions in the remaining theory, making it nonlocal. In the
AdS context, we foliate spacetime by surfaces≠Mr of
constant radial coordinater, with enclosed volumeMr .
We fix the values of the fieldsFr on ≠Mr and perform
the bulk path integral over the excluded volume. The re
sult is a nonlocal functional ofFr which we treat as a
boundary contribution to the bulk action describingMr .
Responses of the resulting interior path integral to vari
tions ofFr describe experiments carried out by observe
placed on≠Mr. We identify these responses with the
correlation functions of a holographic dual defined on th
interior boundary. Related work has appeared recently
[3]. For some other discussions of RG equations in th
AdS and CFT context, see [4].

The observer at≠Mr naturally probes the interior vol-
ume with pointlike variations of the fieldsFr . In the
semiclassical limit, the bulk equations of motion tell u
that these variations turn into extended variations of th
fields at infinity (see, e.g., [5] and references therein). Th
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spreading of the fields increases as≠Mr is moved into
the interior. In the CFT dual, these boundary values
bulk fields map onto sources smeared over a character
scale specified by the position of the inner boundary. I
then appropriate to integrate out CFT degrees of freedo
lengths shorter than this scale. This suggests that the
rior holographic theories described above are related to
CFT duals of AdS spaces by coarsening transformatio
We will demonstrate that this is the case and show that,
any nested family of foliating surfaces for AdS, there is
RG equation describing the flow of observables in the c
responding series of interior holographic duals. Spacet
diffeomorphisms relate foliating families and are realiz
as relations between different flows.

(1) Defining the inner correspondence.—We will con-
sider Euclidean AdS, which is topologically a ball. F
liate AdS by a family of topologically spherical surface
indexed by a parameterr approaching0 at the boundary
and` at the center. Let≠Mr be any element of this fo-
liating family, with Mr being the enclosed volume. Th
AdS/CFT correspondence for the boundary atr � 0 is
written as [6,7]

e2Z0�F0� �
Z
M0

DF e2S0�F�

� �e
2

R
≠M0

F0O � � e2SCFT�F0�. (1)

The two terms on the left represent the string theory p
integral on AdS evaluated as a functional of the bou
ary dataF0. On the right-hand side is the effective a
tion for the dual conformal field theory with sourcesF0.
The spacetime actionS0 contains both bulk and bound
ary contributions:S0�F� �

R
M0

L �F� 1
R

≠M0
B0�F0�,

where the boundary terms are chosen to cancel diverge
arising from the bulk integral (see, e.g., [8]). Upon pe
forming the bulk path integral,Z0�F0� becomes a func-
tional of F0 defined on≠M0. Since the conformal facto
on the boundary of AdS actually diverges, it is convenie
to cut off the space at some smallr � e, which can be
understood as a kind of ultraviolet regulator for the C
© 1999 The American Physical Society 3605
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[9]. (We will always take e ! 0 in the end.) We write

Ze�Fe� �
X̀
n�1

Z
≠Me

"
nY

j�1

dbj

p
ge�bj� Fe�bj�

#

3 cn�e; b1, . . . , bn� . (2)

Here b are boundary coordinates and ge is the determinant
of the induced metric on ≠Me . The correlation functions
of the dual CFT are precisely the coefficients cn in the
e ! 0 limit.

We are interested in defining a suitable inner corre-
spondence between quantum gravity on Mr and some
theory defined on the boundary ≠Mr . In the field theory
limit we would like an equation analogous to (1):

e2Zr�Fr � �
Z
Mr

DF e2Sr�F� � e2SCFT �Fr�. (3)

Consider an observer stationed on ≠Mr . Such an
observer can probe physics in the region Mr by measur-
ing the amplitudes for various field configurations Fr to
occur. The amplitudes are given by the path integral in
the full AdS spacetime subject to the boundary condition
that F � Fr on ≠Mr . It is convenient to perform the
path integral in two steps. First, integrate over fields in the
excluded volume M0 2 Mr to get a nonlocal functional
of Fr : e2Zr�Fr � �

R
Mr

DF
R
M02Mr

DF e2S0�F� �R
Mr

DF e2Sr�F�. Sr�F� encapsulates the physics in
Mr . The virtue of first integrating over the bulk fields
in the excluded volume is that we can envision doing the
analogous procedure in the gauge theory. Roughly speak-
ing, fields Fr correspond to smeared fields F0 at the outer
boundary, and hence to smeared sources in the gauge the-
ory. In the CFT it is then natural to form an effective action
by integrating over field modes with wavelengths shorter
than the smearing length.

To compute bulk correlation functions on ≠Mr we
perform the remaining path integral over Mr to obtain
a functional of Fr ,

Zr�Fr� �
X̀
n�1

Z
≠Mr

"
nY

j�1

dbj

p
gr�bj� Fr�bj�

#

3 cn�r; b1, . . . , bn� . (4)

We have obtained a one parameter set of correlation func-
tions cn�r; b1, . . . , bn� indexed by r which, by construc-
tion, reduce to those in (2) as r ! e. The dependence
on r is naturally interpreted as the renormalization group
evolution of the correlation functions.

Semiclassical correspondence: In the semiclassical,
small curvature, limit the bulk path integral for the “outer
correspondence” (1) is dominated by its saddle points.
So, in the corresponding limit of the dual CFT, Eq. (1)
becomes e2Scl�F0� � e2SCFT�F0�. The left-hand side is now
simply the AdS classical action evaluated as a functional
of boundary data. To define the “ inner correspondence” in
the field theory limit we simply integrated over the fields
in the excluded volume M0 2 Mr . In the semiclassical
3606
limit this amounts to evaluating the action for a classical
solution in the excluded volume with fields taking values
Fr at the inner boundary. There is a unique solution in
the bulk with the prescribed boundary conditions, at least
in perturbation around the free limit.

We can compute the full bulk action associated with
classical solutions and express it in terms of either
the fields Fe or Fr: Scl �

P`
n�1

R
≠Me

�
Qn

j�1 dbj 3p
ge�bj� Fe�bj��cn�e; b1, . . . , bn� �

P
`
n�1

R
≠Mr

�
Qn

j�13

dbj

p
gr�bj� Fr�bj�� cn�r; b1, . . . , bn�. To derive an RG

equation we must relate the correlation functions at r to
those at e. Such a relation is found by noting, as above,
that the classical fields Fe are uniquely specified by Fr .
We display this relation in terms of a propagator,

Fe�b� �
Z

≠Mr

p
gr�b0� Ger�b, b0� Fr�b0� . (5)

The meaning of our construction: The meaning of our
construction is most easily grasped by considering two
point functions in the inner and outer theories. In the
semiclassical limit, the outer CFT two point function for
widely separated operators is computed from a classical
bulk geodesic between two boundary points. Our proce-
dure for computing inner two point functions amounts to
extending the geodesic between two interior points until
they reach the outer boundary, and adding in the action for
the excluded part of the trajectory. Since the geodesics
spread on the way from the interior boundary to the exte-
rior, interior correlators at one separation are given by ex-
terior correlators at a larger separation. More concretely,
consider AdS in Poincaré coordinates: ds2 �

�2

r2 �dr2 1

db2�. Consider a scalar field in AdS in a representation
of the conformal group with weight D. Disturbances of
this field on the AdS boundary (r � 0) propagate to the

surface at fixed r via the kernel Gbb � rD

� r21jb2b0j2�D . So
a point disturbance at ≠M0 grows to a coordinate size r

at ≠Mr . Conversely, a given point on ≠Mr is affected
by fields within a patch of coordinate size r on the outer
boundary. Now imagine an observer on ≠Mr who probes
the system with local sources. In terms of the original
CFT, such an observer has access only to sources which
are smeared over coordinate size r. So her experiments
can be reproduced by an effective action in which degrees
of freedom smaller than r have been integrated out—short
distance information has been lost. (If the observer can
place sources on ≠Mr with arbitrary precision, all CFT
degrees of freedom must be retained. This is because the
effect of the smearing can be undone by making experi-
ments at infinitesimal separations on ≠Mr . But, of course,
such infinite precision experiments are beyond the valid-
ity of our supergravity analysis.) Integrating out degrees
of freedom induces an infinite series of higher derivative
terms, multiplied by powers of the dimensionful scale �. If
one tries to pass to the flat space limit by sending � ! `,
the coefficients of the higher derivative terms diverge, sig-
naling an increasingly nonlocal description.
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(2) RG flow of observables.—We will now show that
the flow of observables between our “ inner” theories is
described by a renormalization group equation. As before,
foliate Euclidean AdS by a family of surfaces homeomor-
phic to the boundary, and let nm be the outward pointing
normal to this family of surfaces. Then, if the spacetime
metric is gmn , the induced metric on a given foliating
surface is gmn � gmn 2 nm nn . In an adapted coordinate
system, with r being the radial direction, the metric admits
an Arnowitt-Deser-Misner-like decomposition: gmn �
grr dr2 1 gij �dbi 1 Vi dr� �dbj 1 Vj dr�, nm �
dmr�pgrr . Using (5) we find that

cn�r; b1, . . . , bn� �
Z

≠Me

"
nY

j�1

db0
j

p
ge�b0

j� Ger�b0
j , bj�

#

3 cn�e; b0
1, . . . , b0

n� . (6)

We have just learned that the observables of the inner the-
ory are precisely the “outer” CFT correlators convolved
against the kernel Ger . To make progress, consider situ-
ations where we can undo the convolution by an integral
transform. For example, if the metric on ≠Me is pro-
portional to the identity, the Fourier transform converts
the convolution into a product. We will therefore refer
to cn in the deconvolved basis as the “momentum space”
correlator c̃n, cn�r; k1, . . . , kn� � G̃er�k1� . . . G̃er�kn� 3

c̃n�e; k1, . . . , kn�. Here the variables k parametrize the de-
convolution basis. The correlator c̃n�e; . . .� is independent
of the index r of the interior surface. So the r dependence
of the inner observables is summarized by

r
≠

≠r
cn�r; k1, . . . , kn� 1

"X
j

r
≠

≠r
lnG̃re�kj�

#
3

cn�r; k1, . . . , kn� � 0 .
(7)

Equation (7) is an RG equation describing Wilsonian flow
of correlators in the gauge theory, in correspondence with
the observations of spacetime observers stationed on the
fixed surfaces ≠Mr .

Example: Poincarécoordinates: In Poincarécoordinates
the metric of AdS is ds2 �

�2

r2 �dr2 1 db2�, and we are
interested in surfaces of fixed r. We will work out the
relation between inner and outer observables for massive
scalars. In AdSd11 the operator dual to such a scalar has
dimension D, where D � d

2 1 n, n � 1
2

p
d2 1 4m2. To

Fourier transform both sides of (6) it is convenient to define
the inner and outer correlators in momentum space:

c̃n�r; k1, . . . , kn� �
Z

≠Mr

"
nY

j�1

dbj

p
gr�bj� eikj ?bj

#

3 cn�r; b1, . . . , bn� . (8)

Next, since the propagator Ger approaches d�b 2 b0��p
gr�b� as e ! r, the Fourier transform with respect to b0

gives G̃rr�b, k� � eik?b. It is easy to construct a massive
scalar mode solution that approaches such a plane wave on
≠Mr from the complete bases provided in, e.g., Ref. [10].
The propagator is then a Bessel function, G̃er�b, k� �
�e�r�d�2�Kn�qe��Kn�qr��eik?b with q2 � k ? k. Using
the above propagator, we express the r dependence of
c̃n�r; k1, . . . , kn� in terms of Bessel functions, and then
employ a series expansion to obtain

c̃n�r; k1, . . . , kn� �

√
r

e

!n�D2d� "Y
j

1 1 F�q2
j e2�

1 1 F�q2
j r2�

#

3 c̃n�e; k1, . . . , kn� , (9)

where F�z2� �
P

`
n�1 e2n�n� z2n 2 z2n

P
`
n�0 en�n� z2n.

We implicitly understood all along that e ! 0. Since the
theory is conformally invariant, this limit yields the scal-
ing behavior c̃n�e; k1, . . . , kn� � en�D2d� c̄n�k1, . . . , kn�
where c̄n is finite. Rearranging terms, the inner correlator
becomes

r2n�D2d�

"Y
j

���1 1 F�q2
j r2����

#
c̃n�r; k1, . . . , kn�

� c̄n�k1, . . . , kn� . (10)

First consider �qjr� ø 1 for all j. Then the interior corre-
lators at r and r0 are related by a rescaling �r�r0�n�D2d�.
This is exactly the behavior expected for low energy cor-
relation functions in a Wilsonian effective treatment. We
argued in Sec. 1 that the observables on the surface ≠Mr

in Poincaré coordinates were smeared at a scale r. A
Wilsonian treatment requires a rescaling of coordinates to
keep the numerical size of the cutoff fixed. Precisely this
effect is achieved by the Weyl factor in the metric on ≠Mr

which keeps the proper size of the smearing fixed. This in
turn results in scaling of the correlators as we flow inwards
(to the infrared).

More generally, since c̄ on the right-hand side of (10)
is independent of r, we have an RG equation,"

r
≠

≠r
2 n�D 2 d�

#
c̃n�r; k1, . . . , kn� 1

"X
j

r
≠

≠r
ln�1 1 F�q2

j r2��

#
c̃n�r; k1, . . . , kn� � 0 .

(11)

When all the momenta q are small, the second term
vanishes and, as expected, we have the RG equation for
pure scaling of infrared Wilsonian correlators. Violations
of scaling appear in the second term and are suppressed at
low momenta.

Bulk field equations from CFT?: In the semiclassical
limit, the interior effective theories that we have con-
structed are related to the exterior CFT by a renormal-
ization group transformation, suggesting a direct relation
between the bulk field equations and the RG equations in
the CFT. This is at first surprising since the bulk field
equations are second order while the RG equations are
3607
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first order. However, there is no real conflict because de-
manding regularity of the bulk solutions in Euclidean space
eliminates one solution, making the equations effectively
first order. Related observations have been made in [3].

The connection can be made more explicit by recalling
the correspondence between boundary behavior of the bulk
fields in AdSd11 and sources and operators in the gauge
theory [6,7,10–12]. Up to a r dependent scaling, sources
correspond to the boundary values of bulk fields while
operators correspond to their radial derivatives. Schemati-
cally, J � F, O � r ≠rF. In the CFT, J appears as a
coupling to the gauge invariant operator O of the formR

J�b�O �b�. Now consider the structure of the bulk
equation for a free scalar field of mass m: �r2≠2

r 1 �1 2

d� r≠r 2 �k2 r2 2 m2�F�r�ei �k?�x � 0. If we use the
relations above for J and O , we find that the field equation
takes the form"

r
≠

≠r
1 d0

#
O 2 �d1 1 d2

�k2r2� J � 0 . (12)

Again, we are being schematic—d0, d1, and d2 are con-
stants. The source J is not an independent variable since
it determines the expectation value for O . In momentum
space, J can be expressed as O times a function of �k2.
Using this, we find that (12) has the same form as (11)
with n � 1.

To make this connection precise, various issues such as
the scheme dependence of the RG equations must be con-
fronted. Nevertheless, there is reason to hope that the field
equations of supergravity can be derived from the CFT via
the renormalization group. Work in this direction is in
progress.

(3) Discussion: geometry and RG flows.—We have ar-
gued that there is a natural way to define an “ interior”
holographic correspondence between physics inside finite
volumes Mr and a theory on the boundary ≠Mr . The
correlation functions of the interior theory are related to
the exterior observables by a coarsening transformation. A
given family of foliating surfaces then leads to a particular
flow of smeared observables summarized by a renormal-
ization group equation. Changing the foliation leads to a
different flow. In fact, we are learning that spacetime ge-
ometry arises in a holographic context as the geometry of
the space of RG flows.

Consider a CFT defined on a plane and a family of theo-
ries derived from it by coarsening transformations. Con-
3608
cretely, let f�b� be a field in the CFT, and define coarsened
fields f�r; b� by convolving F against a kernel Kr which
has a characteristic scale r. As r increases from 0 to `,
we arrive at a family of smeared theories. In some natural
sense there should be a geometry on this “stack” of theo-
ries. First of all, a coarsening transformation should be
accompanied by a rescaling of lengths, and that is imple-
mented by rescaling the metric of the smeared theories. In
addition, we would like a notion of distance or separation
between the original CFT and its cousins that depends on
the coarsening parameter r. For the class of kernels in-
spired by AdS/CFT, we have learned that there is a natu-
ral distance, and it is given by the geodesic length between
the fixed r Poincaré surfaces. In this sense, anti–de Sitter
spaces induce a geometry on a certain class of RG flows
of the dual CFTs.
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