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Constraints on Light Pseudoscalars Implied by Tests of the Gravitational Inverse-Square Law
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The exchange of light pseudoscalars between fermions leads to a spin-independent potential in
order g4, where g is the Yukawa pseudoscalar-fermion coupling constant. This potential gives rise
to detectable violations of both the weak equivalence principle (WEP) and the gravitational inverse-
square law (ISL), even if g is quite small. We show that when previously derived WEP constraints are
combined with those arising from ISL tests, a direct experimental limit on the Yukawa coupling of light
pseudoscalars to neutrons can be inferred for the first time (g2

n�4p & 1.6 3 1027), along with a new
(and significantly improved) limit on the coupling of light pseudoscalars to protons.

PACS numbers: 04.80.Cc, 14.80.– j
Recently there has been growing interest in using grav-
ity experiments to constrain the couplings of new light
bosons which arise naturally in most extensions of the
standard model [1–5]. Although considerable theoretical
and experimental effort has been devoted [1–5] to the
couplings of light scalar and vector particles, there is sig-
nificant interest as well in the couplings of new light pseu-
doscalars. These include axions which have derivative
couplings to fermions, and generic pseudoscalars which
have Yukawa couplings. In a previous paper [6], it was
shown that laboratory bounds on the Yukawa couplings of
light pseudoscalars to protons and neutrons could be sig-
nificantly improved by using the results from recent weak
equivalence principle (WEP) experiments [7]. These ex-
periments are sensitive to the spin-independent long-range
forces that arise in order g4 from two-pseudoscalar ex-
change [6,8,9], where g is defined by the coupling

L �x� � igc�x�g5c�x�f�x� . (1)

Here f�x� is the field operator for a pseudoscalar of mass
m, and c�x� denotes either a proton (p), electron (e),
or neutron (n) of mass Mp , Me, or Mn, respectively. For
each pair of interacting particles, L �x� leads to a potential
V �4��r� in order g4 which in the m ! 0 limit is given by
[8,9]

V
�4�
ab �r� � 2

g2
ag2

b

64p3MaMb

1
r3 , (2)

where a and b may each denote p, e, or n. The object of
the present paper is to demonstrate that already existing
data from tests of the gravitational inverse-square law
(ISL) [1,10] provide new stringent constraints on g2

p and
g2

n. When combined with the constraints implied by
Eq. (3) below and the data from the WEP test in Ref. [7],
the ISL data lead to the first direct experimental bound on
the pseudoscalar-neutron coupling constant g2

n, and to a
significantly improved bound on g2

p [see Eq. (10) below].
Leaving aside for the moment the contribution from

electrons, it was shown in Ref. [6] that V
�4�
ab leads to an
0031-9007�99�83(18)�3593(4)$15.00
acceleration difference D �a2220 of macroscopic test objects
2 and 20 in the presence of a common source M1. If these
have masses M2 and M20 , and contain Z2 (N2) protons
(neutrons), and Z20 (N20) protons (neutrons), respectively,
then
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In Eq. (3), �F ��r� is the integral over the mass distribution
of the source [6], mi � Mi�mH , mH � m�1H1�, Mn �
Mp � M, and D�Z�m�2220 � Z2�m2 2 Z20�m20 , etc. [1].
Since all the parameters appearing in Eq. (3) are known,
except for the pseudoscalar couplings g2

p and g2
n (to protons

and neutrons, respectively), an experimental determination
of D �a2220 leads to a constraint on g2

p and g2
n.

As noted in Ref. [6], however, the right-hand side of
Eq. (3) vanishes whenever g2

p and g2
n satisfy

g2
p

g2
n

� 2
D�N�m�2220

D�Z�m�2220

, (4)

in which case g2
p and g2

n can be arbitrarily large and
still be compatible with any experimental bound on
D �a2220 . Since the right-hand side of Eq. (4) is close to
1 for most pairs of materials, including those used in
Ref. [7], Eq. (4) can be satisfied even when g2

p and g2
n

are each quite large provided g2
p � g2

n. This is shown
graphically in Fig. 1, which plots the constraints in the
g2

p-g2
n plane that emerge when Eq. (3) is combined with

the experimental limits of Gundlach et al. [7]. It is seen
that the boundary of the allowed region is a hyperbola
with an asymptote near g2

p � g2
n, along which no limits

on g2
p or g2

n can be inferred. To circumvent the problem
caused by such “hyperbolic” constraints, one can combine
results from experiments using different materials, which
thus have slightly different asymptotes. Alternatively,
one can choose special materials (such as 2 � Li and
© 1999 The American Physical Society 3593
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FIG. 1. Laboratory constraints on g2
p and g2

n. The region in
the g2

p-g2
n plane above and to the right of each curve is excluded

at the 1s level by the indicated experiment. The gray shading
indicates the region excluded by the overlap of all present
laboratory experiments, and the remaining allowed region is
shown in white. The data are from Gundlach et al. [7], Ramsey
[20], Ritter et al. [19], and Spero et al. [10]. The limit from
Ritter et al. on g2

n is derived in Ref. [6].

20 � Ru) for which Eq. (4) can never hold [6], and which
thus lead to ellipses in the g2

p-g2
n plane. The combination

of “elliptical” and “hyperbolic” constraints would then
lead to separate bounds on g2

p and g2
n. As we now

demonstrate, existing data from ISL tests also provide
3594
elliptical constraints on g2
p and g2

n and, when combined
with earlier WEP results, lead directly to the bounds
quoted in Eq. (10) below.

Consider the ISL experiment of Spero et al. [1,10] in
which a cylindrical Cu test mass is suspended at the end
of a torsion fiber inside a larger hollow stainless steel
cylinder. It can be shown that for infinitely long cylinders
the Cu test mass will experience a force from the stainless
steel cylinder only if the underlying interaction is not a
pure 1�r2 force. When the small (and calculable) end
effects due to finite cylinders are taken into account,
the experiment of Spero et al. becomes a null test for
the presence of new non-Newtonian inverse-power-law
interactions, such as V

�4�
ab �r� in Eq. (2). We will use

two convenient parametrizations of power law potentials
between two particles 1 and 2 [11,12]:

Vn�r� � 2an
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Here GN is the Newtonian gravitational constant, r0 �
1 fm is an arbitrarily chosen length scale, B1 and B2 are
the baryon numbers for bodies 1 and 2, respectively, and
Ln and an are dimensionless constants characterizing the
strength of the interaction. When gravity is included, the
total potential energy between these two point masses is
given by
Vtot�r� � 2
GNM1M2

r
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where mP �
p

h̄c�GN is the Planck mass. The null re-
sults of the ISL test of Spero et al. can then be used to
set limits on an or Ln, after integrating the correspond-
ing 1�rn11 force laws over the mass distributions of the
Cu test mass and the stainless steel cylinder [13]. The
1s limits implied by Spero et al. for an and Ln are
shown in Table I for several physically relevant values
of n. The results in Table I, which were obtained by di-
rect integration over the mass distributions of the inter-
acting Cu and stainless steel cylinders, are in excellent
agreement with those obtained previously by Mostepa-
nenko and Sokolov [14] who used a phenomenological
parametrization of the non-Newtonian interaction to con-
strain Ln. Although we are specifically concerned with
the case n � 3, other values of n are also interesting:
n � 2 potentials can arise from 2-scalar exchange, as well
as 2-photon exchange [15], and n � 5 characterizes the
2-body potential from neutrino-antineutrino exchange [16]
and the 2-pseudoscalar exchange potential with deriva-
tive coupling (which is applicable to axions) [9]. Note,
however, that n � 1 is uninteresting since such a poten-
tial would not lead to a deviation from the inverse-square
law, but only to a modified value of GN (which would
be difficult to detect). Table I also presents the 1s lim-
its derived from the experiment of Mitrofanov and Pono-
mareva (MP) [17] which is a test of the ISL over the range
3.8–6.5 mm. In this experiment a modified Cavendish
apparatus is used to measure the force between a mass
A suspended at one end of a torsion balance, and a sec-
ond mass B whose distance from A is varied. The ex-
periment then compares the experimental value for the
force ratio F�r1��F�r2�, where r1 � 3.773�40� mm and
r2 � 6.473�40� mm, to the calculated ratio expected as-
suming Newtonian gravity. We see from Table I that
for the case n � 3, which is our concern in this pa-
per, the limits implied by Spero et al. are more stringent
than those of MP, although for n � 4, 5, 6 the reverse
is true.
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TABLE I. 1s limits on anrn21
0 and Ln in Eq. (5) from Spero et al. [10] and Mitrofanov and

Ponomareva [17].

Spero et al. Mitrofanov and Ponomareva
n anrn21

0 Ln anrn21
0 Ln

2 1.3 3 1026 m 7.7 3 10230 6.8 3 1025 m 4.0 3 10228

3 1.3 3 1028 m2 7.7 3 10217 8.1 3 1028 m2 4.7 3 10216

4 1.7 3 10210 m3 9.9 3 1024 1.3 3 10210 m3 7.5 3 1024

5 2.3 3 10212 m4 1.4 3 1010 2.1 3 10213 m4 1.2 3 109

6 3.2 3 10214 m5 1.8 3 1023 3.4 3 10216 m5 2.0 3 1021
To extract constraints on the pseudoscalar coupling
constants g2

p and g2
n from Spero et al., we begin by

considering the interaction of two macroscopic objects
separated by a distance r that is large compared to their
dimensions. From Eq. (2) the total 2-body interaction
energy V

�4�
12 in order g4 is given by

V
�4�
12 �r� � 2

1
64p3M2

1
r3 �g2

pZ1 1 g2
nN1�

3 �g2
pZ2 1 g2

nN2� , (7)

which should be compared with the parametrizations of
Eq. (5) for n � 3. For the actual geometry of the Spero
experiment one must integrate over the mass distributions
of the inner test mass and the outer cylinder [13], so that
1�r3 in Eqs. (5) and (7) is replaced by the appropriate
average �1�r3�. By combining Eqs. (5) and (7) for n � 3
the constraint implied by Spero et al. can be expressed in
the formµ
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Using the 1s limits from Spero et al. presented in Table I
we then find

�0.469g2
p 1 0.540g2

n� �0.460g2
p 1 0.549g2

n�

& 3.5 3 10212. (9)

In Eq. (9) the expression in the first set of parentheses
arises from the hollow cylinder, where the coefficients of
g2

p and g2
n are the values of Z�m and N�m, respectively,

for stainless steel. Similarly, the expression in the second
set of parentheses represents the contributions from the Cu
test mass, while the right-hand side of Eq. (9) is derived
from the bound on a3r2

0 quoted in Table I.
We see immediately from Eq. (9) that the constraint

implied by the ISL experiment of Spero et al. [10] leads
to an ellipse in the g2

p-g2
n plane, as can be seen in

Fig. 1. This is, of course, related to the fact that the
left side of Eq. (9) cannot vanish unless both g2

p and g2
n

do. Figure 1 also exhibits the previously derived WEP
constraint [6] from the experiment of Gundlach et al. [7],
which gives rise to a hyperbola in the g2

p-g2
n plane as

we have noted previously. The significant new feature
of Fig. 1 is that the combination of the hyperbolic WEP
constraint and the elliptical ISL constraint leads to upper
bounds on g2

p and g2
n separately. We find from the figure

the following 1s limits:

g2
p�4p & 1.6 3 1027, (10a)

g2
n�4p & 1.6 3 1027. (10b)

The result for g2
n in Eq. (10) represents the first direct

laboratory constraint on the Yukawa coupling of pseu-
doscalars to neutrons. We note that the only previous
laboratory limit on g2

n [6] was based on an indirect
model-dependent argument due to Daniels and Ni [18]
utilizing the spin-dependent results of Ritter et al. [19].
For g2

p there is an earlier result due to Ramsey [20],
g2

p�4p & 2.5 3 1025 (1s), which was obtained from a
study of the molecular spectrum of H2. As we see from
Eq. (10), the limit implied by combining the ISL and
WEP results improves the Ramsey limit by more than
2 orders of magnitude.

We can also extract from Fig. 1 constraints on g2
p and

g2
n in special cases of interest. For a universal coupling

to baryon number g2
p � g2

n, and we find (at the 1s level)

g2
p,n�4p & 1.5 3 1027. (11)

The similarity of the results in Eqs. (10) and (11) arises
because the largest allowed values of g2

p and g2
n lie

near the line g2
p � g2

n, as can be seen in Fig. 1. Two
other results of interest are the limiting cases g2

p ¿ g2
n

and g2
n ¿ g2

p . We can see from Fig. 1 that these are
determined by the WEP results of Gundlach et al., and
hence can be taken over from our previous analysis [6]:

g2
p�4p & 9 3 1028, �g2

p ¿ g2
n� , (12a)

g2
n�4p & 7 3 1028, �g2

n ¿ g2
p� . (12b)

Although we have focused thus far on the pseudoscalar
couplings to protons and neutrons, it is straightforward to
show that the contributions from electrons can be incorpo-
rated via the substitution g2

p ! g2
c � g2

p 1 �M�Me�g2
e ,

where ge is the pseudoscalar-electron coupling constant.
This follows from Eq. (2) by noting that the contribu-
tions from electrons are enhanced by a factor M�Me

relative to those from protons and neutrons. The lim-
its on g2

p�4p in Eqs. (9)–(12) can then be taken over
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immediately for g2
c�4p , and these lead to constraints on

g2
e , at least in principle. In practice, however, existing

limits on g2
e�4p obtained from spin-dependent experi-

ments [21] are more stringent, g2
e�4p & 10216. It fol-

lows that despite the enhancement arising from the factor
M�Me, the contribution from the term in g2

c�4p propor-
tional to g2

e is at most of order 10213. Thus, the bounds
on g2

e�4p implied by Eqs. (9)–(12) are in fact bounds
on g2

p�4p , and the prospects for constraining g2
e via V

�4�
ab

seem quite remote at present.
The limits on g2

p and g2
n in Eqs. (9)–(12) are the most

restrictive direct laboratory constraints currently available.
Although astrophysical arguments based on stellar cooling
calculations are more stringent [22], typically g2

p,n�4p &

10221, they are necessarily more model dependent. For
derivative-coupled pseudoscalars such as axions, there is
at present no viable alternative to astrophysical bounds,
since those arising from existing laboratory experiments
(corresponding to n � 5 in Table I) are too weak to be of
use. However, by adapting the present formalism future
laboratory experiments carried out over shorter distance
scales may give rise to useful bounds on axions, as we
will discuss in more detail elsewhere.

In summary, we have shown that the limits implied
by the ISL experiment of Spero et al. [10], complement
those previously derived from the WEP experiment of
Gundlach et al. [7], and together allow the pseudoscalar-
neutron coupling constant g2

n to be directly determined for
the first time. In addition, the combination of these two
experiments leads to a new bound on the pseudoscalar-
proton coupling constant g2

p , which improves on the
earlier Ramsey limit [20] by more than 2 orders of
magnitude. As was noted in Ref. [6], the Gundlach
results lead to hyperbolic constraints on g2

p and g2
n

which admit the possibility that each of these could be
quite large, provided that g2

p � g2
n. Absolute bounds on

these constants could be obtained, however, by using
special materials such as Li and Ru. What we have
shown here is that already existing data from the ISL
experiment of Spero et al. provide the needed elliptical
constraints, in effect playing the same role that a WEP
experiment utilizing Li and Ru would. The fact that
the WEP and ISL experiments complement each other
in this way raises the possibility of a new generation of
WEP and ISL experiments whose results, when combined,
would lead to even more stringent constraints on g2

p and
g2

n. Although the laboratory constraints may not be as
restrictive as those implied by astrophysical limits [22],
they are completely model independent, and furthermore
allow g2

p and g2
n to be separately determined.
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