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We examine two simple and feasible practical schemes allowing the complete determination o
quantum measuring arrangement. This is illustrated with the example of parity measurement.
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In the most standard picture of quantum mechan
the statistics of every measurement are governed by
projection of the system state on the orthogonal eigensta
of a set of commuting self-adjoint operators represent
the measured observables. This implicitly assumes t
the measurement is performed on a closed system.

A more complete and realistic picture must encompa
the possibility of controllable as well as unpredictable co
plings of the observed system with external agents. T
is to say that the measurement is performed, in general
an open system. Among other consequences, this exte
the idea of observables beyond self-adjoint operators,
troducing generalized measurements described by pos
operator measures (POMs).

In particular, this occurs when a standard measurem
is preceded by an interaction of the observed system w
other degrees of freedom that are in a fixed and kno
initial state [1]. On the other hand, the process can a
involve uncontrollable influences (usually undesired)
outer degrees of freedom. This is frequently the case w
couplings with reservoirs and other mechanisms lead
to losses and decoherence effects, for instance. In m
practical situations it is not possible to predict whic
external variables are involved or the way they affect t
performance of the measurement. In other words, to so
extent, the real measurement differs from the intended o
in an unpredictable way.

In this paper we present two simple and feasib
practical procedures that allow us to determine complet
any quantum measurement process. The objective of s
a characterization is to obtain in practice the actual PO
governing the statistics. This would allow one to ascerta
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to what extent the planned performance is reached
revealing undesired deviations.

The system, which is the object of the observatio
and the external variables involved are described by t
Hilbert spacesHs andHa, respectively. Since the total
Hilbert spaceH � Hs ≠ Ha represents by definition
a closed system, the system-environment interaction c
always be implemented by a unitary operatorU acting
on H . The system is initially in an arbitrary state with
density matrixrs, while the external variables will be
in some statera that does not depend onrs. After
the interaction, some set of compatible observables
measured on the output stateUrsraUy. The statistics
of the measurement are given by the projection on a
of orthonormal vectorsjk� whose span need not coincide
with Hs:

P �k� � trs,a�jk� �kjUrsraUy� , (1)

whereP �k� is the probability of the outcomek. This
is a standard ideal measurement becauseHs ≠ Ha is a
closed system. Sincera is fixed and does not depend on
rs, the information provided by the measurement can
regarded as information aboutrs. This interpretation can
be expressed explicitly by rearranging Eq. (1) in the for

P �k� � trs�D�k�rs� , (2)

where

D�k� � tra�Uyjk� �kjUra� (3)

is a POM acting onHs. These expressions represen
a standard measurement when the system is decoup
from the environment or its effect is trivial. We have
© 1999 The American Physical Society 3573
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generalized measurement whenever U is nontrivial, pro-
vided that ra and U are completely known in advance [1].
This formulation comprises any uncontrollable source of
uncertainty or error that might be present in a real mea-
surement if we take into account that ra and/or U can be
partially or completely unknown.

Such an indetermination can be removed by the prac-
tical characterization of the process. The purpose is to
find procedures that enable the knowledge of the actual
D�k� without requiring any prior knowledge about ra and
U. Equivalently, the measurement is completely charac-
terized once we are able to predict successfully the statis-
tics P �k� for every rs.

For the sake of simplicity, in what follows we shall
consider that Hs and jk� are associated with an un-
bounded continuous degree of freedom describable by
adimensional Cartesian variables q and p with commu-
tation relation �q, p� � i. It will be seen that the removal
of these conditions is straightforward. Among other ex-
amples, this includes the one-dimensional motion of a
trapped ion, where q and p are position and linear mo-
mentum, and a single mode of the electromagnetic field,
where q and p are field quadratures.

The first characterization procedure we will examine
relies on the controlled variation of the initial state in
a suitable domain (Fig. 1). A very simple and feasible
choice is the coherent states rs � ja� �aj defined by
the eigenvalue equation aja� � aja�, where a is the
annihilation or ladder operator a � lq 1 ip��2l�, with
l a suitable constant [2–4]. Since the complex parameter
a is allowed to vary, the statistics of the measurement
Q�k, a� depend on the variables k and a, and is given by

Q�k, a� � �ajD�k� ja� . (4)

FIG. 1. Scheme for the practical determination of a measure-
ment process. An input coherent state ja� is coupled with
auxiliary degrees of freedom in the state ra. After the inter-
action, a standard measurement is performed in some of the
degrees of freedom. The statistics are given by projection on
the orthogonal vectors jk�. The dashed line represents the de-
grees of freedom which are not measured.
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We can see that for fixed outcome k this is the Q
function of D�k�, which is an informationally complete
representation on phase space of any operator [2–4].
Then, the probabilities Q�k, a� determine completely
D�k� and, therefore, the measurement process.

As mentioned above, this procedure can be easily
adapted to other circumstances. We can briefly examine
the case when Hs is finite dimensional, as it occurs for
spins or for the internal state of atoms when a finite
set of energy levels is involved. In such a case the
previous procedure is still valid if we replace ja� by
SU(2) coherent states

jz � �
1

�1 1 jz j2�j

jX
m�2j

µ
2j

j 1 m

∂1�2

z j1mjj, m� , (5)

where z is a complex parameter and the 2j 1 1 vec-
tors jj, m� �m � 2j, 2j 1 1, . . . , j�, for integer or half-
integer j, are an orthonormal basis of the corresponding
Hilbert space [2].

In the preceding scheme the complex amplitude a (or
z ) of the input coherent state must be varied and its value
has to be monitored. Next, we examine a second scheme,
where the input state need not be varied. To this end, let
us consider the following state jj� in the Hilbert space
Hs ≠ Hi :

jj� �
q

1 2 jjj2
X̀
n�0

jnjn, n� , (6)

where Hi represents an auxiliary degree of freedom,
j is a complex parameter with jjj , 1, and jn, m� �
jn�i ≠ jm�s is the number basis. The space Hs ≠ Hi

can represent the movement of a trapped ion along two
orthogonal directions or two modes of the electromagnetic
field. In the case of trapped ions, jn, m� are energy
eigenstates of a two-dimensional harmonic trap and the
state (6) can be prepared as shown, for example, in
Ref. [5]. In the case of the electromagnetic field, the
states jn, m� are photon-number states and jj� is generated
in spontaneous parametric down-conversion in a nonlinear
crystal [4].

Together with the measurement D�k� on Hs, we con-
sider a simultaneous measurement performed on Hi , as
shown in Fig. 2. We assume that this additional measure-
ment allows us to reconstruct the state on this degree of
freedom, as can be achieved by different standard prac-
tical arrangements. For definiteness, we assume that the
statistics of the measurement are proportional to the pro-
jection on a coherent state ja� [ Hi , where the complex
parameter a represents the outcomes. This measurement
can be implemented for field modes [6] as well as for
trapped ions [7].

The joint statistics associated with the two simultaneous
measurements are

P �k, a� � trs,i�ja� �ajD�k� jj� �jj�

� trs�D�k� �ajj� �jja�� , (7)
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FIG. 2. Arrangement to determine a measurement process
without varying the initial state jj� [ Hs ≠ Hi . To this
end, an additional measurement is performed in the degrees
of freedom represented by Hi . The statistics of such a
measurement are given by the projection on the coherent states
ja� [ Hi .

where the last equality follows because D�k� does not act
on Hi . Since jj� is a vector in Hi ≠ Hs and ja� is
a vector in Hi , the projection �ajj� in Eq. (7) gives a
vector in Hs,

�a jj� �
q

1 2 jjj2 e2jaj2�12jjj2��2jja�� , (8)

where jja�� is a coherent state in Hs. We then have

P �k, a� � �1 2 jjj2�e2jaj2�12jjj2��ja�jD�k�jja�� , (9)

or, equivalently,

Q�k, a� �
1

1 2 jjj2
ejaj2�12jjj2��jjj2P �k, a��j�� . (10)

Therefore, this scheme also provides the complete charac-
terization of the process via the same function Q�k, a�.

This arrangement works because of the strong correla-
tions between the Hs and Hi variables in the state jj�.
This correlation, which is clear in the jn, m� basis, extends
as well to any other basis. Because of this, the realiza-
tion of a measurement on Hs or Hi reduces the state in
the other Hilbert space to a state strongly related to the
measurement performed and its outcome [8]. Since we
are dealing with two simultaneous measurements, we can
express the result obtained in two different but equiva-
lent ways.

If we focus on a particular outcome k of the measure-
ment performed on Hs, we find that the reduced state in
Hi is proportional to jayaD��k�j�aya, where D��k� de-
notes the complex conjugate of D�k� in the number basis
[8]. The measurement in Hi then allows us to reconstruct
D�k� via its Q function.

On the other hand, if we consider a particular outcome
a for the measurement in Hi , the reduced state in Hs

is a coherent state, as Eq. (8) shows. Each outcome
means a different coherent state incident at the input
of the measurement process, so this arrangement works
as the first one analyzed above (Fig. 1). However, we
stress that in this last case the incident state on the
arrangement is always the same and nothing needs to be
varied. The outcome of the measurement in Hi monitors
automatically the actual input coherent state in Hs.

Finally, it can be worth examining the practical perfor-
mance of this scheme. Two sources of uncertainty will
affect the accuracy of the characterization. These are the
sampling error caused by the finite number of scanned
values of a and the statistical fluctuations caused by the
limited set of repeated measurements at each a point.
This will limit the knowledge of the function Q�k, a�,
which in turns implies some amount of uncertainty when
predicting the results of potential measurements on arbi-
trary input states. We must stress that the influence of
any other agents usually regarded as sources of error,
such as low detection efficiencies, for instance, does not
imply any imperfection or uncertainty in our case, since
they are part of the actual measuring arrangement being
characterized.

This can be illustrated by means of a particular example.
We will assume that the apparatus measures parity. In such
a case, there are only two possible outcomes: k � 1, 2,
with D�1� �

P
`
n�0 j2n� �2nj and D�2� � I 2 D�1�.

We can also consider that during the measurement the
system is superposed with thermal noise so that the actual
positive operator measure is no longer given by projection
on pure states but on the accordingly thermalized states.
Then, the exact Q function to be determined is

Q�1, a� �
1
2

µ
1 1

1
1 1 2n̄

e22jaj2��112n̄�
∂

, (11)

where n̄ is the average number of thermal photons added
[9].

In Fig. 3 we show the typical result of a finite sampling
of Q�1, a� affected by statistical fluctuations. In order to
infer the actual D�1� from the registered data, different
algorithms may be used [10–12]. According to the
procedure followed in this paper, we could extract an
analytic function Q̃�a�, estimating the true but unknown
Q�1, a�.

After a set of outcomes such as the ones represented
in Fig. 3, it can be inferred that the reconstructed Q̃
function that will fit best to the experimental data will
be of the form Q̃�a� � c0 1 c1 exp�2c2jaj2�, where
the parameters c0, c1, and c2 have to be estimated.
This fitting should always be compatible with quantum
mechanics [12]. This means that Q̃ must represent
probabilities and, being a Q function, it cannot be
arbitrarily narrow. Then, the parameters c0, c1, and
c2 cannot take arbitrary values, and suitable constraints
should be taken into account in such a fitting.

Concerning errors, meaningful conclusions can be ob-
tained using the method of least squares [10]. Although
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FIG. 3. Plot of the Q�1, a� function affected by statistical
fluctuations and evaluated on a square grid of 9 3 102 equally
spaced a points. The inset shows a radial section with
102 points. The statistical fluctuations correspond to 3 3 103

measurements for each a.

this method can lead to Q̃ functions that do not satisfy
the mentioned constraints, it can still serve to suitably es-
timate the accuracy of the reconstruction and the uncer-
tainty d on the prediction of future measurement results
tr�rsD�1��. For example, it can be easily seen that there is
an upper bound for d2 that is proportional to tr�rs�aya�2�
and inversely proportional to the total number of measure-
ments performed.

In conclusion, let us regard the results of this work from
another perspective. The standard idea of measurement
has been enlarged since it has been shown that suitable
arrangements enable the determination of the quantum
state the system is in (provided it can be repeatedly pre-
pared) [13]. This goes beyond the standard simultaneous
determination of compatible observables because it gives
the statistics of all observables at once. Very recently it
has been further extended by showing that there are prac-
tical schemes allowing the experimental determination of
input-output transformations [14]. In this context, the two
schemes studied above can be interpreted as a further ex-
3576
tension of this concept to include measuring arrangements.
In fact, it appears that it is much simpler to measure a POM
than a quantum state.

The measurement of transformation operators demon-
strated in Ref. [14] might also serve to deduce the effec-
tive POM, provided that the actual vectors jk� determining
the final measurement were known. In comparison with
this possibility, the method presented in this paper does not
require any previous knowledge about jk�.
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