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Generation of Phase States by Two-Photon Absorption
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A new method for producing a phase state by two-photon absorption is proposed. We show
that such a process conserves the phase of an initial coherent stateja� and converts it tojc� �
�j0� 1 eifj1���

p
2, wherea � jajeif. Therefore, we obtain desirable phase states by controlling the

phase of the initial coherent state. Appropriate materials with a reasonable two-photon absorption rate
are proposed.

PACS numbers: 03.65.Bz, 42.50.Dv, 42.50.Lc
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Generation and control of a single-photon state a
a quantum bit (qubit) state are extensively studied fro
both viewpoints of fundamental interest and applicatio
to quantum cryptography and communication. A popu
method for producing a single-photon state is to use one
the twin photons created by parametric down-convers
as a signal and the other as a trigger [1]. The generat
time of a photon pair is randomly distributed according
the Poisson-point process. A single-photon turnstile d
vice, based on simultaneous Coulomb blockade for el
trons and holes in a mesoscopicpn junction, was proposed
[2] and demonstrated [3] to generate heralded single p
tons. The repetition rate is limited by a radiative recom
bination lifetime. Recently, Imamoglu and colleagues [
proposed “photon blockade,” in which optical tunneling
prevented by Kerr nonlinearity instead. They avoid th
usual one-photon absorption using atomic dark resonan
To avoid one-photon loss, a special condition must be sa
fied for the pulse intensity and width, which places also
limit on the repetition rate.

A 50%–50% beam splitter converts a single-phot
state into a quantum entangled state,�j10� 1 eifj01���

p
2.

The two outputs of the beam splitter are correlated, so th
if one of the two beams is lost to reservoirs, the other
collapsed to eitherj0� or j1�. Generation of a single qubit
state�j0� 1 eifj1���

p
2, which is proposed in this paper

is preferred for some applications because there is no n
to protect the correlated counterpart.

In this paper, we propose a new method for generat
phase states�j0� 1 eifj1���

p
2, which is the special case

of a Pegg-Barnett phase state [5], by two-photon abso
tion (TPA). The present phase state is considered as a q
state in the language of quantum information science.
us consider a series of well-focused short laser pulses to
irradiated on a side of crystal in which TPA is effective
Under these conditions, the radiation field is well confin
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to a small volume. Therefore we may expect the TPA r
becomes larger than a single-photon one even when a l
pulse contains two or three photons. We will discuss s
eral possible systems, i.e., atomic gas, exciton-biexci
system, and semiconductors. We choose, e.g., for the
case, the fundamental frequencyv well below the exciton
frequency, but the two-photon frequency2v is well above
the band-to-band transition frequency. The laser pul
are attenuated dominantly by TPA and each becomes a
perposition of single- and zero-photon states with alm
equal amplitude.

A similar qubit state can be generated by the interact
between a single mode high-Q cavity field and a two-level
atom [6,7], but the extraction of such a state out of t
cavity with a high repetition rate for measurement a
communication is nontrivial.

We have chosen the carrier frequency enough off re
nant from the intermediate levels. Then, attenuation r
k1 due to single-photon absorption becomes smaller th
electronic excitation ratek2 by two-photon transition. The
electronic state excited by TPA is embedded in continu
states so that its relaxation rate is large enough. As a re
both the intermediate and final electronic states in the to
density matricesrtot�t� can be adiabatically eliminated.

When we introduce time coordinatet � t 2 z�yg

moving with the laser pulse peak with group velocityyg

in the z direction, the master equation of the radiatio
field is derived as follows [8,9]:

≠r

≠t
� 2k1�bybr 2 2brby 1 rbyb�

2 k2�by2b2r 2 2b2rby2 1 rby2b2� , (1)

where by and b are creation and annihilation operato
of photons composing a light pulse,k1 is the rate of a
one-photon absorption, andk2 is that of the TPA. These
ratesk1 and k2 are related to a single- and two-photo
© 1999 The American Physical Society
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absorption coefficients a�1� and a�2� by a�1� � k1�yg

and a�2� � k2n�yg with photon number n. The master
equation is based on an effective Hamiltonian that ignores
the dynamical Stark shift [10], which brings the constant
energy shift of the field and the photon-number-dependent
energy shift of the atomic system. The latter term is
proportional to the difference between the squares of the
coupling constants with the field g1 (for jg� ! ji�) and
g2 (for ji� ! je�), where g, i, and e are the electronic
ground, the intermediate, and the excited states. Therefore,
if g1 � g2, the latter term becomes negligible compared
to the two-photon Rabi frequency, which is also negligible
compared to the relaxation rate of the excited state. Then
only the carrier frequency is modified by constant. This
is applied to the exciton-biexciton system and the atomic
system we consider in this paper.

First, we consider an ideal two-photon absorber; i.e., k1
is negligibly small compared with k2. Then the steady
state solution of Eq. (1) is analytically solved:

�0jrj0� �
X̀
q�0

�2qjr�0�j2q� , (2)

�1jrj1� �
X̀
q�0

�2q 1 1jr�0�j2q 1 1� , (3)

�0jrj1� � �0jr�0�j1�

1
X̀
q�1

qY
r�1

s
1 2

1
4r2 �2qjr�0�j2q 1 1� . (4)

When the initial state is a highly excited coherent state
jcin� � ja� �a � jajeif, jaj ¿ 1�, we obtain the output
state jcout�:

jcout� �
1
p

2
�j0� 1 eifj1�� , (5)

which is numerically confirmed. Therefore, we obtain
phase states (qubit state with arbitrary phase) by control-
ling the phase of an initial coherent state. The initial phase
is conserved through a two-photon damping process. This
marked property is the characteristic of the TPA process.

The mechanism of the phase conservation will be un-
derstood as follows: First, in TPA, the damping process is
divided into two channels: even and odd photon number.
Suppose the initial coherent state is expanded by the Fock
states:

ja� �
X̀
n�0

cnjn� . (6)

The phase difference between c2n11 and c2n equals f:
c2n11�c2n � jajeif. Second, when one TPA event
occurs, the wave function changes

P
cnjn� !P

cn

p
n�n 2 1� jn 2 2� except for the normalization

constant. Therefore, the phase of the wave function does
not change in this transition. As a result, the n-odd and
n-even channels keep the phase difference in TPA, so that
the initial coherent state is converted to the phase state
[Eq. (5)] except for the absolute phase factor due to free
evolution.

The dynamics of the wave function is clearly demon-
strated by a quantum Monte Carlo wave function simu-
lation, or quantum trajectory method [11]. Figure 1
illustrates a single trajectory showing the time evolution
of the expansion coefficients cn for the initial coherent
state ja�, where a � 25. We clearly observe that the
cn with even n take positive values, whereas the cn with
odd n take negative values. The phase difference p is
conserved and the final state approximately approaches
to �j0� 2 j1���

p
2. Figure 2 shows the steady state

expansion coefficients averaged over 1000 trajectories.
We observe that a phase state [Eq. (5)] is obtained for
a . 5. We also observe from Fig. 2 that, if we start from
a coherent state with small average photon number, we
obtain qubit states with different probability amplitudes,

c0j0� 1 c1eifj1� , (7)

with c0�c1 . 1, which covers the lower hemisphere of the
entire Bloch sphere.

Next, we consider the effect of the one-photon absorp-
tion which is not negligible in realistic systems. However,
if k2 . k1, the state above is transiently realized. Figure
3 shows the density matrix elements r00, r11, and r01 as a
function of time obtained by solving Eq. (1) numerically.
When the linear damping rate is much weaker than the non-
linear one, e.g., k2�k1 � 10, one- and zero-photon states
can be obtained with almost the same probabilities. When
we set the length �ls � ygts� of the material correspond-
ing to k2ts � 0.6 denoted by the arrow in Fig. 3, we ob-
tain the above-mentioned phase state with high efficiency.
For example, an adequate length is ls � 4 � 7 mm for
k2�k1 � 10 when we choose ts � 0.4 � 0.7 3 10210 s
and yg � 109 cm�s. The efficiency of the generation of a

FIG. 1. A single quantum trajectory showing the probability
amplitudes cn as a function of time. The initial state is a
coherent state ja � 25�.
3559
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FIG. 2. Probability amplitudes c0 and c1 averaged over 1000
trajectories as a function of a.

phase state depends on the ratio k2�k1 as shown in Fig. 4.
We plot r00, r11, and r01 at the optimum time when the
off-diagonal element r01 takes a maximum value. To
obtain a phase state with high efficiency, k2�k1 . 10
should be satisfied, which is realizable as will be discussed
later.

Before proceeding, we show the self-phase modulation
to be negligible. TPA occurs stochastically in time, which
seems to dephase the quantum coherence between j0�
and j1� states via the photon-number-dependent phase
rotation by the Hamiltonian H0 � h̄vbyb 1 h̄xn̂�n̂ 1

1� for free evolution (first term) and self-phase modulation
3560
FIG. 3. Density matrix elements, r00, r11, and r01 as a
function of time. Inset shows the distribution of the photon
number at the optimum interaction time k2t � 0.6.

(second term). However, we can prove that this dephasing
effect is negligible by the following simple argument.
Suppose the initial coherent state is expanded by the Fock
states as in Eq. (6). Then each Fock state jn� evolves
with the effective Hamiltonian H � H0 1 V . Here, V �
V �2�bb 1 H.c., where the coordinates of the electronic
system are taken into account in the coefficient V �2�

through the TPA coefficient k2 by V �2� � ik2. Here and
hereafter, we put h̄ � 1. Then the time development is
expanded in V as follows:
e2iHtjn� �

Ω
e2iH0t 2 i

Z t

0
dt1 e2iH0�t2t1�Ve2iH0t1 1 �2i�2

Z t

0
dt1

Z t1

0
dt2 e2iH0�t2t1�Ve2iH0�t12t2�Ve2iH0t2 1 · · ·

æ
jn� .

(8)
The first, second, and third terms of the right-hand side
of Eq. (8) correspond to the cases with no TPA, one
TPA at t1, and two TPA at t2 and at t1, in this or-
der. The self-phase modulation for the single TPA event
at t � ti is different from the one for no TPA event
by eix�ni21� �ni22�ti e2ixni�ni11�ti � e2ix�4ni22�ti , where ni

is the photon number just before ti . The average time
uncertainty Dti in which single TPA for ni is induced
is Dti � 1��k2ni�ni 2 1�	. As a result, the phase un-
certainty associated with a random single TPA event is
evaluated as x�4ni 2 2���k2ni�ni 2 1�	 for ni $ 2. Af-
ter such self-phase modulation is accumulated for an or-
der of �ni�2� events, total phase uncertainty is an order
of 2x�k2. Remember that x � NjPgij

4��h̄3�v 2 vig�3	,
and k2 � N jPgij

2jPiej
2��h̄3�v 2 vig�2G2	, where G2 is

the relaxation rate of the excited state, and N is a number
density of oscillators times �e�m�4�h̄��2e0Vv�	2. Thus
the total phase uncertainty x�k2 � G2�jv 2 vigj. As
long as a single-photon energy is enough off resonant from
the first excitation h̄vig � Ei 2 Eg, which is our case, the
self-phase modulation effect is negligible. As a result, the
phase randomization between j0� and j1� states are shown
to be negligible against the probability distribution of TPA
events (t1, t2, . . . , tn�2).

Next, we will briefly discuss several material systems
which make possible generation of phase states. First, let
us consider an atomic system. Use of a four-state atomic
system with a quantum interference, i.e., electromagneti-
cally induced transparency, makes it possible to absorb two
photons but will not absorb one photon [12]. The second
candidate is a system of single exciton and biexciton, e.g.,
in CuCl crystal [13,14]. This system has an advantage over
atomic gases as the density of oscillators is much higher
than the gas. As long as the two-photon Rabi frequency
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FIG. 4. Density matrix elements at the optimum interaction
time (realizing a maximum value of r01) as a function of k2�k1.

is smaller than the relaxation rate of the biexciton, the adi-
abatic elimination of electronic states is justified, and the
present theory is applicable to the biexciton system. We
can show for both systems that TPA coefficient a�2� is cho-
sen to be larger than the linear one a�1� even when the
light pulse contains two or three photons, as long as the
beam area is less than 1026 cm2 and the laser pulse width
less than 10211 s. Third, some bulk semiconductors also
look promising to get qubit pulse trains. The linear absorp-
tion coefficient a�1� obeys Urbach rule below the exciton
level and decreases very sharply from 105 cm21 to 1 cm21

within 10 meV change of incident photon energy, e.g., in
CdS [15] and CdSe [16]. Even when we choose the inci-
dent laser pulse at such a frequency as a�1��v� , 1 cm21

just below the exciton peak, we can make use of the one-
photon resonant enhancement of a�2� due to the large ex-
citon oscillator strength.

Finally, we will discuss a detection of the phase state
and its application. The optical homodyne with a phase-
locked-loop oscillator (OHPLL) is an ideal detector for
the phase state [17,18]. The positive operator valued mea-
sure for the OHPLL becomes P�f� �

1
2p jf� �fj, where

jf� � j0� 1 eifj1� [18]. If we consider the communi-
cation protocol that the state j0� 1 j1� is detected if the
measurement result lies in the interval 0 6 u and that the
state j0� 2 j1� is detected if the measurement result lies
in the interval p 6 u, then the error rate Pe is estimated
by Pe � 2 1

2p

Rp

p2u�1 1 cosf� df � u3

6p , �u ø 1� and
the transmission rate T is given by T � 2 1

2p

Ru

0 �1 1

cosf� df � 2u

p . For example, we have Pe � 5 3 1025

and T � 6.4% for u � 0.1, and Pe � 4 3 1024 and
T � 13% for u � 0.2.

A quantum cryptography using this phase state has
advantages of high bit rate and security over a prototype
system using an attenuated laser beam. In our scheme, Bob
can select one of the two bases, �j0� 6 j1���

p
2 or �j0� 6

ij1���
p

2. This can be done by the phase modulation of
the initial coherent state which is input to the two-photon
absorber. Alice can independently set up her OHPLL
receiver to measure either one of these two bases. She
can detect the signal phase (0 or p) with a high efficiency
only if her receiver setup matches Bob’s base. In this way,
the standard protocol is applied to our case.

In conclusion, we have proposed a new method to
produce a regular series of qubit states with arbitrary
phase by using two-photon absorption. This series of
qubits has several advantages so that this will be useful
for future quantum communication systems.
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