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A systematic solution of a model for copper oxides reveals a line of transitions T � Tp�x� for x,
the doping away from half filling less than a critical value, to a phase with broken time reversal
and rotational symmetry. The single-particle spectrum in this phase is calculated to have a gap
��cos�kxa�p� 2 cos�kya�p��2. The properties in this phase are compared to the properties of the
so-called “pseudogap phase” of the copper oxides.

PACS numbers: 74.25.Jb
A schematic phase diagram of the copper-oxide (CuO)
metals is shown in Fig. 1. The superconducting region
is surrounded by three distinct regions: a region marked
(III) with properties characteristic of a Fermi liquid, a
region marked (I) in which a Fermi surface is discerned
but in which the quasiparticle concept is inapplicable, and
a region marked (II), the so-called pseudogap region, in
which the concept of a Fermi surface itself is lost.

The topology of Fig. 1 around the superconducting re-
gion is that expected around a quantum-critical point in
itinerant fermions. The marginal Fermi-liquid (MFL) phe-
nomenology [1] with which many of the unusual properties
in region (I) are understood assumes a scale-invariant low
energy fluctuation spectrum characteristic of a quantum-
critical point at x � xc, the composition near the highest
Tc. A region of Fermi liquid is then expected for x . xc
at low temperatures, as in region (III), and a region with a
broken symmetry for x , xc at low temperatures. As in
heavy-fermion compounds [2], a region of superconduc-
tivity is found at low temperatures peaked in the region
around the quantum-critical point. From this point of view,
the crucial problem in CuO metals is the symmetry of the
phase in the region (II) below Tp�x�.

In a systematic theory starting with a general model
for CuO [3], the region (II) in Fig. 1 is derived to be
a phase in which a fourfold pattern of current flows
in the ground state in each unit cell as in Fig. 6 of
Ref. [3]. This phase will be referred to as the circulating
current (CC) phase. The properties of this phase were not
studied in Ref. [3], which was mainly concerned with the
fluctuations leading to the MFL properties in region (I)
and the superconductivity induced by them.

In the past few years, the properties in region (II) have
become much clearer, thanks especially to angle-resolved
photoemission (ARPES) [4] and thermodynamic measure-
ments [5,6]. An anisotropic pseudogap in the single-
particle spectra begins to develop at T , Tp�x� which is
similar to the temperature below which other properties
begin to change from the MFL behavior of region (I) [7].
I calculate in this paper that the CC phase has a single-
particle spectra with a gap consistent with the observed
symmetry, and of the right order of magnitude, and from
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which the other properties in region (II) follow. I suggest
further experiments to confirm this identification. (Nu-
merous ideas already suggested for the pseudogap phase
are discussed elsewhere [7].)

The model.—The CC phase is a mean-field solution of
a general Hamiltonian in the basis of three orbitals per unit
cell, d, px , py [8]:

H � K 1 H
�1�
int 1 H

�2�
int , (1)

K �
X
k,s

edndks 1 2tpdd
1
k,s�sx�k�pxks 1 sy�k�pyks�

2 4tppsx�k�sy�k�p1
xkspyks 1 H.c. (2)

Here a particular choice of the relative phases of
the x and y orbitals in the unit cell has been
made, sx,y�k� � sin�kxa�2, kya�2� and, for later,
cx,y�k� � cos�kxa�2, kya�2� and s2

xy�k� � sin2�kxa�2� 1

sin2�kya�2�. I consider the local interaction on the Cu
and the O orbitals,

H
�1�
int �

X
i,s

Udndisndi2s

1 Up�npxisnpxi2s 1 npyisnpyi2s� , (3)

FIG. 1. Generic phase diagram of the cuprates for hole
doping. Not shown is a low temperature “insulating phase”
in region II due to disorder.
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and the nearest neighbor interaction between the Cu and
the O orbitals,

H
�2�
int � 2V

X
kk0q,ss0

cx�q�d1
k1qsdksp

1
xk02qs0pxk0s0

1 x ! y . (4)

More general interactions do not change the essential
results derived here. Throughout this paper (renormalized)
energy difference ed between the Cu and the O orbitals is
taken to be zero. It is important that, in CuO, ed & O�tpd�.
Taking it as zero simplifies the calculations presented; the
principal effect of a finite ed will be mentioned.

The circulating current phase.—First, I derive some
results of Ref. [3] in a simpler way by a simpler treatment
of the large on-site repulsions in Eq. (3) and calculate the
phase diagram of the CC phase. In the limit �Ud ,Up� ¿
�tpd , tpp�, a good mean-field approximation [9] for low
density of holes (or electrons) consists in replacing
tpd ! t̄pd � tpdjxj; tpp ! t̄pp � tppjxj, where jxj is the
deviation from half filling in the conduction band: x . 0
for holes, and x , 0 for electrons. A more general
treatment, which does not change any of the essential
results, considers separately the average occupation in
the oxygen and copper orbitals and renormalizes tpd , tpp
accordingly.

A mean-field (nonsuperconducting) order parameter is
sought which does not break translational symmetry. This
means that the mean-field Hamiltonian is just a change of
the coefficients in the kinetic energy operator K . Most of
the possible mean-field decompositions of the interactions
change only the magnitude of the coefficients while
preserving the symmetry. The only interesting mean-field
decomposition comes from H

�2�
int and yields the complex

mean-field order parameter,

Reif � V�2
X
ks

sx�k� �d1
kspxks	 2 sy�k� �d1

kspyks	 .

(5)

The mean-field Hamiltonian itself is

Hmf � K 2 Re2if
X
ks

�sx�k�d1
kspxks 2 sy�k�d1

kspyks�

1 H.c. 1
R2

2V
. (6)

The energy of each of the three bands obtained by
diagonalizing Eq. (6) is changed by a finite �R, f�. But
for any k the trace of the change in energy of the three
bands is zero. The change in energy can therefore be
expressed purely in terms of the change in energy deck
of the filled part of the (hole) conduction band. (The
expression for deck and several other details is given in
[10].) So the mean-field values R0 and f0 are determined
by minimizing

R2

2V
2 2

X
k

deck�f,R�f�eck� . (7)
From Eq. (7), it is deduced that R0 fi 0 at T � 0 for

2jxjt̂pd
V

,
X

k,kF

µ
s2
xy�k� 1

8tpp
tpd

s2
x�k�s2

y�k�
s2
xy�k�

∂
, (8)

and f0 is p�2 or 2p�2. The symmetry of the transition
is therefore of the Ising variety.

For jxj ø 1, Eq. (8) is satisfied only for x less than
critical doping jxcj,

jxcj 

1
2

�V�tpd� �0.25 1 0.5tpp�tpd� . (9)

jxcj defines the quantum-critical points for both electron
and hole dopings. u0 � R0��2t̄pd� obtained by expanding
Eq. (7) to O�R4� is given to within numerical factors of
O�1� by u

2
0 � t̄2pd�xc 2 x��2�V �tpp 1 tpd��. For ed fi

0, t2pd is replaced by t2pd 1 O�e2
d�. With V , tpp , tpd , and

ed of similar magnitude, as for CuO compounds, xec, xhc
are therefore about 0.2. The line of transitions at finite
temperatures varies with x as Tp�EF � jxc 2 xj1�2. This
is to be identified with Tp�x� of Fig. 1.

The energy of the (transverse) fluctuations in f about
f0 at long wavelengths is estimated from Eq. (7) to be

V0
0 � O�u2

0�t̄pp 1 t̄pd��4� . (10)

The variation of V0
q with q is estimated to be slow, of

O�qa�2.
The eigenvectors of the states in the conduction band to

leading order in u and tpp�tpd are

jckus	 �
1
Nk

∑
jckos	 1 i2

p
2 u0

t̄pp
t̄pd

sx�k�sy�k� jakos	
∏

,

(11)

where jako	 and jcko	 are the nonbonding and conduction
band states of k for u � 0, and Nk is the normalization
factor. The term proportional to u0 causes time-reversal
breaking. Similarly, expressions can be derived for the
other two bands. The three together correspond to a
current carrying state with the pattern shown in Fig. 6 of
Ref. [3].

The CC phase breaks a rotational invariance of the Cu-
O lattice (besides the time-reversal invariance). So lattice
defects, such as interstitials, dislocations, or grain bound-
aries, couple as external fields do to a d � 2 Ising order
parameter [11]. No thermodynamically sharp transition is
therefore possible at Tp�x�.

Anisotropic gap in the normal state.—The source of
the instability above is interband transitions at k � 0.
Therefore the relative energies of the three bands shift
with nothing special happening at the chemical potential.
This solution will now be shown to be modified by the
fluctuations which lead to scattering among the states
[Eq. (11)] near the chemical potential. The Hamiltonian
for such fluctuations, generated by operators dfq, df1

q ,
3539
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is derived to be

Hfluct �
X
q

V0
qdf1

q dfq

1
X

kk0s

g�k, k0�c1
k0usckus�dfk2k0 1 df1

k02k�

1 H.c. , (12)
3540
where, to zeroth order in tpp�tpd ,

g�k, k0� � u0 t̄pd�sx�k�sx�k0� 2 sy�k�sy�k0���sxy�k� .
(13)

For k ! k0, this is ��cos�kxa� 2 cos�kya��.
Consider now the renormalization of the phase-

fluctuation energy through Eq. (12). For small q,
V2�q� � V02
q 2 2V0

q t̄
2
pdu2

0�1 2 q2�8�
0X

�cos�kxa� 2 cos�kya��sxy�2��ek1q 2 ek� , (14)
with the restriction on the sum that k , kf and k 1

q . kf . The two terms in (14) have similar magnitudes
suggesting that the phase fluctuations can be unstable over
a substantial part of momentum space. A way to restore
stability is by a condensation of the phase fluctuations.

The condition for stability is derived by the ansatz that
�dfq	 and �c1

k1q,usckus	 are finite for a range of q around
zero [12]. Equation (12) then leads to new eigenstates
which are annihilated by

gks �

√
ckus 1

X
qfi0

uk,k1qck1qus

! ,
Mk . (15)

Mk is the normalization. It will turn out that uk,k1q fi 0
only for states with j���e�k�, e�k 1 q���� 2 mj & V

0
0 . For

such states, momentum is not a good quantum number;
I label the new states by k to indicate that the average
momentum of such a state is k. This unusual symmetry
breaking is essential to gain phase space for scattering
near kf .

From Eq. (12),

�dfq	 � 2
1

V0
q

0X
k
g�k, k 1 q� �c1

k1q,usckus	 . (16)

I use the Brillouin-Wigner (BW) self-consistent approxi-
mation to get

�c1
k1q,usckus	 � g�k, k 1 q� �dfq	��Ek 2 Ek1q� ,

(17)

where E0
ks are the new one-particle eigenvalues to be

determined. The BW approximation is exact in the limit
that the number of states �k 1 q� coupled to a given state
k is very large.

Combining Eqs. (16) and (17) yields the self-
consistency equation,
F�k, k 1 q� � g�k, k 1 q��V0
q

0X
k0s0

g�k0, k0 2 q���Ek02q 2 E0
k�F�k0, k0 2 q� , (18)
where F�k, k 1 q� � �Ek1q 2 Ek� �c1
k1qusckus	. In

Eq. (18), the sum is restricted to states k, etc., such that
je�k� 2 mj & V

0
0 , due to the retarded interaction.

For a solution of Eq. (18), note that, since q ! 0,
g�k, k 1 q� � �cos�kxa� 2 cos�kya��, for q ! 0,
F�k, k 1 q� � �cos�kxa� 2 cos�kya�� also. Second,
E�k� 
 e�k� for je�k� 2 mj * V

0
0 . A consistent solu-

tion for k near kf is then

Ek � ek 6 D�k�, k _ kf , (19)

D�k� � D0�cos�kxa� 2 cos�kya��2, (20)

as may be verified by substitution. The value of D0 is
evaluated to be of 0�u2

0 t̄
2
pdr�0��.

The gap in the one-particle spectrum at the chemical
potential has a magnitude D0 which can be estimated to
be x�xc 2 x�t2pd�tpd 1 tpp���Vtpp� which, at �xc 2 x� 

0.05, and tpd � V � tpp � 1 eV, is 
20 meV. This
has the right order of magnitude [4]. The differences of
(19) from the D-wave BCS single-particle spectrum are
significant and have observable consequences discussed
below.

The leading decrease in energy due to the modifica-
tion of the single-particle spectrum is �u

2
0 . Therefore,

the nature of the transition remains unchanged, at least in
mean-field theory; only quantitative changes are intro-
duced in the condition [Eq. (8)] for the occurrence of the
CC phase.

Properties in the circulating current phase.—The
single-particle density of states in the CC phase calculated
from Eq. (19) is equal to r�0�, the normal density of states
for v�D . 1, and to

rcc�v� � r�0�
2
p

arcsin

µÇ
v

D

Ç1�2∂
,

Ç
v

D

Ç
# 1 .

(21)

This increases as jv�Dj1�2 for jv�Dj ø 1 and, unlike
the d-wave superconductors (which have a logarithmic
singularity at v � D, the superconducting gap), rcc�v�
is less than r�0� at all jvj , D.

Equation (21) should be compared with the single-
particle density of states measured in tunneling [13] and
with the specific heat [5]Cy and magnetic susceptibility [6]
x . The former shows a diminution in the single-particle
density of states for low energies at T & Tp�x� but shows
no rise above r�0� at finite energies until T & Tc�x�,
when the characteristic superconducting density of states
appears. Cy in the CC phase is predicted �T3�2 and
x � T1�2 for T ø Tp�x�. Because of the intervention of
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superconductivity, it is hard to test these power laws accu-
rately. In the measured range [5,6], Tx�Cy is nearly inde-
pendent of temperature as predicted here. x�T �, measured
more accurately than Cy�T �, can be fit to T1�2. One can
deduce the continuation to the T dependence below Tc by
invoking conservation of entropy on the Cy�T � measure-
ments. Cy�T � � T3�2 for T ø Tp�x� is then not incon-
sistent, while Cy�T � � T2 clearly is.

To obtain the spectral function A�k, v� measured by
ARPES [4], one needs the single-particle self-energy be-
sides Eq. (19). The self-energy differs in an important
way from the corresponding calculation for a d-wave su-
perconductor [14] (and is quite different from s-wave su-
perconductors) [15]. In both cases, the bare polarizability
x0�q, v� is zero for v , D�q�, [D�q� for the supercon-
ductors]. The lowest energy single-particle scattering for
momentum q occurs by an intermediate one-particle state
near the zero of the gap. Therefore the threshold for
single-particle scattering of a state at q is also D�q�. For
v * D�q�, x0�q� with Ek’s given by Eq. (19) is pro-
portional to v�DeF . So the renormalized x�q, v� for
v . D�q� is similar to the normal state above Tp�x�, i.e.,
of the marginal Fermi-liquid form. The single-particle
self-energy for �v,T � ø D�q� is exponentially small, but
for �v,T � * D�q� it returns to the value Sn�v, q,T � with-
out the pseudogap. By interpolation from the known form
at low and high energies,

ImS�v, q,T � 
 sech

µ
D�q,T �

�v2 1 p2T2�1�2

∂
ImSn�v, q,T � .

(22)

The spectral function at the Fermi wave vectors k̂f
defined by E�k̂f� � 6D�k̂f�, calculated using Eqs. (19)
and (22) and the marginal Fermi-liquid form for Sn, is
plotted in Fig. 2 for a few temperatures. A pseudogap
in the direction k̂f appears below T 
 D�k̂f� producing

FIG. 2. The spectral function at the Fermi wave vectors as
a function of energy below the chemical potential normalized
to the gap in the direction of that wave vector D�k̂f� for
temperatures T � nD�k̂f ��4p for n � 1, 2, 3, 4, and 5.
the illusion of “Fermi arcs” shrinking as temperature
decreases. The line shape in Fig. 2 at low energies, in
the pseudogap region, fits the experimental curves [4]
well within the experimental resolution. A prediction
following from the results of the previous section is that
D � �xc 2 x� and also �Tp�x� 2 T .

The promotion of d-wave or s-wave superconductivity
by current fluctuations, depending on the Fermi surface at a
given doping, has been derived elsewhere [10]. In conclu-
sion, I note that although I have presented a systematic the-
ory in agreement with the principal experimental results, it
is only a mean-field theory. One can be confident of its
applicability only if the CC phase is directly observed. It
is possible that, in an improved theory, the quasiparticles
are topological excitations of fermions bound to comoving
current fluctuations.
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