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Finite Temperature Mott Transition in the Hubbard Model in Infinite Dimensions
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We study the second order finite temperature Mott transition point in the fully frustrated Hubbard
model at half filling, within dynamical mean field theory. Using quantum Monte Carlo simulations
and analytical arguments, we show the existence of a finite temperature second order critical point by
explicitly demonstrating the existence of a divergent susceptibility as well as by finding coexistence in
the low temperature phase. We determine the precise location of the finite temperature Mott critical
point in the �U, T� plane. Our study verifies and quantifies a scenario for the Mott transition proposed
in earlier studies of this problem.

PACS numbers: 71.30.+h, 71.27.+a
When the ratio of the strength of the electron-electron
interaction to the bandwidth is increased, a metal insulator
transition (MIT) occurs [1]. This phenomenon has been
continuously and intensively studied in narrow bandwidth
systems for several decades [2], with V2O3 being the
archetypal system.

Providing a detailed theoretical description of this
transition in systems which are not magnetically ordered
is one of the most challenging problems in condensed
matter physics. In recent years, great progress was
achieved using the dynamical mean field theory (DMFT),
a method which becomes exact in the limit of large
lattice coordination. Within this framework, one can
describe both metallic and insulating phases. See [3]
for a review. Though some aspects of this theory agree
with the scenarios put forth earlier by Brinkman and Rice
and by Hubbard [4,5], the DMFT approach suggested
important qualitative modifications of these pictures.

At zero temperature, in the DMFT of the fully frus-
trated Hubbard model, upon increasing the interaction the
paramagnetic metallic state is destroyed at a critical value
denoted by Uc2 [6]. On the other hand, the insulating
solution that exists for large U disappears when U is
decreased, at a different critical value Uc1, at which the
gap closes. Since Uc1 , Uc2, there is a region where
two phases, i.e., a paramagnetic metal and a paramag-
netic insulator, coexist. This region of coexistence natu-
rally extends to finite temperatures, where it is bounded
by two lines Uc1�T � and Uc2�T �. Consequently, at fi-
nite temperatures, a first order metal to insulator transi-
tion takes place at a value of the interaction Uc�T�, with
Uc1�T � , Uc�T � , Uc2�T � [7,8].

At temperatures above this transition line, two dif-
ferent crossover regions were identified [6,9]. The
first crossover region is the natural continuation of
the Uc2�T � line, and was characterized as the place
where the low energy resonance in the spectral function
3498 0031-9007�99�83(17)�3498(4)$15.00
rapidly loses its intensity and the resistivity increases
rapidly. The second crossover region can be consid-
ered to be the natural extension of the Uc1�T �, and
was characterized as the line where the gap is com-
parable to the temperature and where a crossover to
activated behavior in the resistivity is seen. These
crossover lines were further related [9] to the experi-
mental observations of McWhan et al. and Kuwamoto
et al. [10,11]. Note that generically within DMFT, i.e.,
both at high and low temperatures, the destruction of the
metallicity and the gap closure occur at different locations
on the phase diagram. The only exception to this is the
finite temperature second order critical point at which
the two boundary lines Uc1�T � and Uc2�T � meet and
terminate. In this paper, we provide a description of this
second order point at which the MIT occurs.

Though substantial evidence indicated [3] that the
qualitative aspects of the finite temperature MIT that is
described above were genuine properties of the exact so-
lution of the model, recent quantum Monte Carlo (QMC)
work challenged this scenario [12]. In Ref. [12] it was
claimed that, within the temperature range numerically
accessible to the QMC technique, it was not possible to
find any evidence for a finite temperature MIT point. It
is very important to clarify this issue, since our earlier
work has successfully predicted new experiments in V2O3
[9] and provided a natural interpretation of earlier data
[10,11]. We describe below how the MIT point can be
found, and we determine its location with reasonable
accuracy, illustrating the power but at the same time
the subtleties of the QMC technique when applied in
conjunction with the self-consistent DMFT equations.

Besides quelling the doubts raised recently in Ref. [12],
there are other motivations for this work. As stressed by
Nozières [13], the Mott transition lacks an obvious order
parameter, so it is not clear a priori which quantities
should exhibit singular behavior. Second, the second
© 1999 The American Physical Society
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order Mott end point is observed experimentally in
V2O3 and NiSexS22x , and its properties are the subject
of ongoing experiments. Finally, it is important from
the point of view of numerical studies of correlated
electron systems. Since a full analytic solution to this
problem is unavailable, the understanding of models in
the limit of large lattice coordination requires numerical
work and analytic approximations. This is a common
situation in the field of correlated electron systems, and
the Hubbard model in infinite dimensions provides an
excellent playground to test the merit of various analytic
approximations and numerical methods.

We consider the Hubbard model on the Bethe lattice
in the paramagnetic phase [14] with coordination d and
hopping t�

p
d in the d ! ` limit [15] at half filling:
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The half bandwidth is given by D � 2t and we set D � 1
as a unit of energy. The chemical potential is set equal to
U
2 at half filling.

All the local correlation functions can be obtained
from a single impurity Anderson model (SIAM) with a
hybridization function,
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provided that D�ivn� obeys the self-consistency condition
[16]:

t2Gimp�ivn� �D, a� � D�ivn� . (3)

Here, a denotes the control parameters of the problem U
and T . Gimp�ivn� �D� is the finite temperature Matsubara
f-electron Green’s function of the SIAM:
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To solve the problem, the single impurity Green’s func-
tion is calculated using QMC or exact diagonalization
methods and (3) is used to check for self-consistency
[3]. This iterative process is continued until self con-
sistency is achieved. At that point, Gimp�ivn� coincides
with Gloc�ivn�, the local Green’s function of the original
lattice problem. At each iteration step we use quantum
Monte Carlo simulations [17] to calculate the impurity
Green’s function in imaginary time [18]. This algorithm
is widely considered to provide numerically exact solu-
tions to the model (in the Monte Carlo sense).

The parameters of the simulation are as follows: we
typically perform 60 000 sweeps (1 sweep � 1 attempt to
update each of the L pseudospins � L attempts, where L
is the number of time slices used), and, when required,
up to 300 000 sweeps in order to minimize the enhanced
fluctuations close to the critical point. We always set the
length of the time slice Dt � b�L # 0.5, where b is the
inverse temperature.

As a criterion for the convergence of the numerical
solution of the DMFT equations, we monitor the evolution
with the iteration number of G�iv1�, the value of the
Green’s function at the first Matsubara frequency. This
quantity is appropriate, as it is essentially the integral of
G�t� (with t being the imaginary time), the quantity that
is directly computed statistically in the QMC calculation.
Also, G�iv1� is the value of the frequency dependent
Green’s function that fluctuates most; thus, it sets an upper
bound for the statistical error of the whole G�ivn�. We
stop the iterations when the fluctuations in G�iv1� become
of the order of the statistical error of the QMC (which is
controlled by the number of sweeps at a given U and T )
and remain stable for at least about 30 more iterations.

In generic regions of the �U, T � plane, less than
10 iterations are sufficient to obtain a converged solution.
However, since we are looking for a critical point which
is a bifurcation point of (3), the number of iterations
needed to obtain convergence diverges, as we approach
the critical point. This is the usual phenomenon of critical
slowing down associated with bifurcating solutions in
recursive procedures and it forces us to increase the
number of iterations, as we approach the critical point.
For example, up to 300 iterations were necessary to
check the convergence at parameter values close to the
critical point. Special care was taken to assure that the
solutions were indeed converged. To this end, we used
two different initial seeds for the iterative procedure:
G�t� �U � 0� that corresponds to a metallic state, and a
G�t� �t � 0� that corresponds to an insulating one. These
two initial Green’s functions have qualitative different
behavior at low frequencies, one with a finite density
of states at the Fermi energy and the other with an
insulating gap. If there is a single solution to the mean
field equations, the algorithm should in both cases evolve
towards the unique attractor. If two different solutions are
allowed, one metalliclike and one insulatorlike, it may be
expected that the metallic seed would evolve towards the
former and the insulating seed towards the latter. Using
this method, when we find a converged unique solution to
(3), we are certain that the algorithm has fully converged.

To prove the existence of a finite temperature critical
point, we need to isolate a physical quantity that exhibits
singular behavior. We view this MIT as a liquid gas
transition, where the double occupancy �d� plays the role
of the density, while U plays the role of the pressure and
T the natural role of temperature. This analogy was put
forward in an insightful paper by Castellani et al. [19]. As
shown here, their scenario is realized within the DMFT
solution of the Hubbard model. With this analogy to the
liquid gas transition in mind, we focus on the behavior
of the double occupation as a function of temperature and
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interaction strength. We define the susceptibility x �
maxU�≠�d��≠U� that, as we shall later show, is a quantity
that diverges at the finite T second order critical point.

In Fig. 1, we show our results for the double occupation
�d� as a function of U. Each set of data is obtained at a
constant T , and we have checked the uniqueness of the
solutions using the procedure described above.

The most remarkable feature is the rapid variation of
�d� with the interaction U at the lower temperatures [8].
This variation is a direct consequence of a divergence in
the susceptibility x defined earlier. In order to obtain
the susceptibility from the discrete set of data at each
temperature, we fit the numerical results with analytic
expressions that follow from a Ginzburg-Landau analysis
[20] to be discussed elsewhere. We obtain the curve
x21�T � (which is plotted in the inset of Fig. 1) that can be
approximated, close to the transition, with the expression
x21 �

t
a1bt , where t is the reduced temperature t �

T 2 Tc, and a and b are real positive parameters. More
precisely, �d� �U, T � contains a singular part (arising
from the liquid gas analogy close to the transition)
and a regular part. The regular part gives the constant
background (b�a) and the singular part produces the
divergent susceptibility (a�t) which is linear in the inverse
reduced temperature. Tc and Uc are fitting parameters,
which give the location of the second order critical point
where the first order lines terminate. A least squares fit to
x gives our estimate for Tc � 0.026 6 0.003 and using
the liquid gas analogy we find that Uc � 2.38 6 0.02.
Thus, we have obtained estimates for the position of the
finite temperature second order critical point in the single
band Hubbard model using the QMC method [21]. It is
important to realize now that the lowest temperature set of
data for the double occupation in Fig. 1 at T � 1�40 �
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FIG. 1. The double occupation �d� as a function of U for
several values of T � 1�20, 1�25, 1�28, 1�32, 1�35, and 1�40
(from bottom to top). The inset shows the inverse susceptibility
x21 as a function of T . The line is a least squares fit using the
expression in the text. The intercept with the T axis gives our
estimate for Tc � 0.026.
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0.025 appears to be slightly below Tc. These results thus
indicate a discontinuous jump in the double occupation.

A more general consequence of the presence of the finite
temperature second order critical point is the existence of
a region at T lower than Tc, where two different solutions
of the mean field equations exist. This coexistence of
solutions, as usual, results in first order transition lines. We
have, therefore, searched for different converged solutions
well below Tc � 0.026 and performed calculations at T �
1�51.2 and T � 1�64 for several values of U close to
Uc. Indeed, we obtained two different and fully converged
solutions at U � 2.4 in the first case, and at U � 2.4
and U � 2.5 in the latter. For the U � 2.4 and T �
1�64 solutions, we have taken special care to rule out
the possibility of systematic errors, by performing a large
number of further iterations after self-consistency was
achieved and also by increasing the number of sweeps
to up to 300 000 to minimize statistical fluctuations. In
Fig. 2, we display two coexistent solutions at U � 2.4 and
T � 1�64, along with the results for the imaginary part of
the Green’s functions on the real frequency axis using the
maximal entropy method [22] for the analytic continuation.
These results, obtained within a narrow range of interaction
U close to Uc and at temperatures below our estimate
for Tc, further confirm the consistency of our numerical
results.

In conclusion, we presented the results of a careful nu-
merical QMC study of the finite temperature Mott tran-
sition in the paramagnetic phase of the Hubbard model
in infinite dimensions. We identified the singular behav-
ior of a susceptibility associated with the finite tempera-
ture critical point, and reasonably accurate estimates for
Uc and Tc were obtained. This should be contrasted with
a previous QMC study of the same problem [12] which
reached the conclusion that there is no signature of a finite
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FIG. 2. Two converged solutions, one metalliclike (solid
circles) and one insulatinglike (open circles), of the DMFT
equations for the same value of the interaction U � 2.4 and
T � 1�64. In the inset we show their corresponding densities
of states.
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temperature second order phase transition in the tempera-
ture region accessible to QMC studies. Furthermore, they
presented Tbound � 0.014 29 as a rigorous numerical up-
per bound on Tc. Here we have shown using two different
approaches, i.e., a high temperature susceptibility calcula-
tion and an explicit demonstration of coexistence at low
temperatures, that a finite temperature critical point exists
and that the bound obtained in [12] is incorrect.

In earlier publications we asserted that qualitative fea-
tures of the paramagnetic metal to paramagnetic insula-
tor transition observed in V2O3 are well described by the
DMFT of the single band Hubbard model on a frustrated
lattice treated using the iterated perturbation theory. In
this work we show that those conclusions are also valid
when a more accurate technique, such as QMC, is used to
solve the dynamical mean field equations. In particular,
the anomalous temperature dependence of physical proper-
ties (double occupancy, resistivity, etc.) and the crossovers
discussed in Ref. [9], which were tied to the proximity to
a second order finite temperature metal to insulator transi-
tion in the model.

While the qualitative agreement between the DMFT
and the experiments is remarkable, there are quantitative
disagreements. The measured plasma frequency is a
factor of 2 larger than the calculated one (using exact
diagonalization and DMFT), if we take the local density
approximation (LDA) estimate of the bandwidth D �
0.5 eV [23]. This was already noticed in Refs. [9,24].
Using the same LDA based estimates for the model
parameters, the critical temperature that we compute (with
DMFT and QMC) is also approximately a factor of
2 smaller than the observed Tc in V2O3 [10].

These results suggest the necessity for the inclusion
of additional features, such as orbital degeneracy, ligand
bands [25], and the electron-phonon interaction [26] in the
model, to be able to make accurate predictions for physical
quantities in this system. The extension of the QMC
algorithm to the orbitally degenerate models proposed by
one of us [27] should be useful for this purpose. Indeed,
less extensive studies than those carried out here suggest
that orbital degeneracy increases substantially the critical
temperature [27].
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