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The dynamical structure factor of a model disordered system consisting of spring-disordered harmonic
linear chains is studied both analytically and numerically. The width of the acoustic excitation peak is
observed to grow quadratically with the exchanged momen@yrauch behavior is shown to be due to
spatial fluctuations of the local wavelength of the collective vibrational modes, which in turn is produced
by the inhomogeneity of the interparticle elastic constants. The extent to which this mechanism
can explain theQ?-dependent broadening recently observed in many glasses both experimentally and
numerically is discussed.

PACS numbers: 63.50.+Xx, 61.43.Fs

The study of the nature of collective atomic excitationsIn order to get insight into the physical properties that
in disordered solids at wavelengths approaching the may be at the origin of this dependence, we consider here
interparticle separatiom, a/A = 0.1-0.5, has received harmonic systems, leaving apart all the difficulties due to
renewed interest in the last few years thanks to newdynamical processes such as, for example, anharmonicity.
experimental tools and to improved numerical techniquesMoreover, in order to obtain simple analytical results,
On the experimental side, the dynamics of the collectiveve also concentrate on one-dimensional (1D) systems,
excitations is often investigated via the dynamic structurespecifically on spring-disordered linear chains. These
factorS(Q, w), i.e., the space-time Fourier transform of the systems, as we will see, show the same broadening law as
particle density correlation function. The studyS§fD, w)  their 2D and 3D counterparts. We find that in disordered
in the region of mesoscopic exchanged moment@m= linear chains the? broadening of(Q, w) can be related
1-10 nm~!) has become recently possible in disorderedo the spatial fluctuations of the elastic constants.
systems thanks to the development of the inelastic x-ray The dynamics of 1D disordered lattices has been thor-
scattering (IXS) technique [1], by which many glassesoughly investigated in the past, and a recent overview on
[2] and liquids [3] have been studied. Although specificthis subject can be found in [6]. One-dimensional sys-
guantitative differences exist among different systems, alltems often show peculiar characteristics; more specifically
the investigated glasses show some common features thatis well known [7] that, at variance witld > 1 cases,
can be summarized as follows: (i) there exist propagatingn a (infinite) disordered linear chain all vibrational modes
acousticlike excitations up t@a = 3; (ii) the slope of the are localized and localization by itself contributes to the
Q-w dispersion relation in th@ — 0 limit extrapolates broadening of the inelastic peaks$ifQ, w). However, as
to the macroscopic sound velocity; (iii) the broadeningwe will show, this effect can be disentangled. Our model
of the excitation peaks irf(Q, w) follows a Q2 law. consists of a linear chain o¥ particles ( = 1,...,N)
These general features 6fQ, w) have been confirmed of massM placed a distance: apart from each other
by numerical calculations in different glasses, using both(x; = ia), and joined by next-neighbor springk;j ran-
standard molecular dynamics simulations [4], and thedlomly chosen from a flat distribution(K)] with ex-
normal mode analysis in the harmonic approximation [5].trema K = AK (meanu; = K and standard deviation

The Q? dependence of the excitation broadeningo; = AK/~/3). The dynamics of the system can be ex-
in the 0 = 1-10 nm™! region has not yet received a pressed in terms of its eigenvalues,) and eigenvec-
theoretical explanation. Such dependence is the same &8s [¢,(i)], p = 1,...,N being the mode label. The
predicted by hydrodynamics, but this coincidence is onlyhigh-temperature dynamic structure factor is expressed as

accidental. Indeed, in the IXS experiments, the broad- KT 02

ening is found to be temperature independent and the S(Q,w) = YR = E(Q, ), (1)
Q? law is numerically found also irharmonic glass with @

models; these results indicate that the origin of this

behavior should be found istructural rather thandy- E(Q,w) = Z 12,(0)*6(w — ),

namical properties, i.e., it should be associated with the > 2)
atomic disorder in the glass and not with dissipative 2,(0) = N—l/zz expliQx; e, (i).

phenomena such as anharmonicity or relaxation processes.
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The eigenvectors and eigenvalues are the solutions of
the secular problem, 3°; Dije,(j) = w,e, (i), where D;;
is the dynamical matrix. The basic properties of S(Q, w)
are contained in E(Q, w), the squared space Fourier
transform of the eigenvectors of modes with frequency
w, “closg” to w. A typica eigenvector obtained from
the diagonalization of the dynamical matrix is reported
in Fig. 1. As is well known (see, for example, [8]),
there exists a rather well defined wavelength but, with
respect to the sine function expected in the case of an
ordered system, three main differences can be noted:
(i) the peak height is not constant, i.e., there exists an
envelope which is localized in space; (ii) the wavelength
A (i.e, the distance between two next nearest nodes) is
not constant, but is rather a space fluctuating quantity;
its statistical distribution is reported in inset (a) of Fig. 1;
findly, (iii) by analyzing in detail the eigenvector between
two successive nodes [see insets (b) and (c)], some
deviations from the simple sine law can be evidenced. In
principle, al these three characteristics could contribute
to the broadening of the inelastic peaks in S(Q, w).
In the following, we will show that the broadening is
mainly due to fluctuations of the local wavelength and
(in 1D systems) to localization. Effect (iii) has minor
consequences, and its signature can be found only in the
low-w tail of S(Q, w).

Let us first focus on effect (ii), i.e., the effect of spatial
wavelength fluctuations. To show how these fluctua-
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FIG. 1. Portion of the eigenvector of the mode at
w/\K/M = 0571 of a chain with N = 1000 particles
and AK/K = 0.6 reported as a function of the particle
coordinate. In the insets, the most relevant features of the
eigenvectors are emphasized: (i) Wavelength fluctuations
[the distribution of A, calculated from 100 realizations of
disorder is reported in inset (a) together with the Gaussian
fit, A/a = 10.18, o,/a = 0.827]; and (ii) deviation from
sine curve [a blowup of the eigenvector (dots) is reported in
the inset (b)] together with the best local sine approximation
(full ling). In the inset (c) it is reported the residua of the
eigenvector after the subtraction of the full line in the inset (5).

tions can by themselves produce the Q2 broadening, we
build up a fictitious, model eigenmode, which possesses
only characteristic (ii), i.e, a sequence of aternating
positive and negative semiperiods of a sine function,
each having a dlightly different wavelength. If &,
(m = 1,2,...) are the positions of the nodes, we define
a loca wavelength A,, = h,, — h,,—» and compute the
Fourier transform of such model eigenvector, i.e., é(Q) «
S fZ:,z dx exp(iQx)sSin27 /A, (x — hy,—2)]. This is
then averaged over different readlizations, assuming a
Gaussian distribution of wavelengths centered at A
and with variance o3. The calculation of E(Q) =
N~ X|e(Q)|?) is straightforward but long; the resulting
E(Q), whichispeaked at Q0 = 27/ A, isquasi-Lorentzian
near the peak itself and its half width at half maximum
(HWHM), T\, is given by

rY _ ol

Equation (3) ismerely amathematical result; we need now
to establish arelationship between o, and the characteris-
ticsof disorder. Inan ordered chain, w and A arerelated by
A= %’ ay/K /M. Inthedisordered chain, the fluctuations
of K produce fluctuations of A and for the local wavelength

we will have
27
AR = :a\/Kfnff/M, 4

where K& is the effective elastic constant obtained
by averaging the individua spring constants K;
that are found between h,-, and h,: (K&~ =
Sien PiKi '/ Y.c,, Pi. Here, the P;'s are weights that
take into account the fact that springs near the nodes are
more effective (because highly stretched) than those near
the antinodes (not stretched) in determining K¢ft.

The validity of Eq. (4), which is derived for the ficti-
tious mode, has been tested numerically by diagonalizing
the dynamical matrix of many realizations of disordered
linear chains. In Fig. 2 we show the correlation between
the diagonalized A and A!°° obtained from the analysis of
the eigenvectors of the modes at w/\/K/M = 0.031 of
1000 disordered chains with AK/K = 0.3, for different
choices of theweights P;. Ascan be seen, the correlations
are satisfactory, indicating the validity of the assumption
that A1°° is determined by an averaged local spring con-
stant. Moreover, we observe that the highest correlation
is found for weights proportional to the square of the local
strain.  From the previous relations, it is easily deduced
that

o) 1 oger 1 [a oy

—_— = — = — , 5
A 2 KT 2\ oy ©)

where n = (n,,) = A/a and a = (P?)/{(P)*. In the fol-
lowing, we will choose P proportional to the square of the
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FIG. 2. Contour plot of the numerical joint distribution
function P (A, A°°) obtained by the analysis of the modes
a w/\K/M = 0.031. The contour plot has been obtained
averaging 1000 redlization of disordered chains (AK/K =
0.3) with N = 1000. The analysis has been performed with
different choices for the weight: (8) P = 1; (b) P = |Ve,(i)l;
and (c) P = |Ve,(i)]*. The P scale is logarithmic and the ith
line indicates the level at 1074 P, ...

strain and, therefore, « = 3/2. By substituting Eq. (5)
into (3), we obtain

0, (6)

which reproduces the Q2 behavior. In summary, we
have shown here that the spatia fluctuations of the
“effective” (i.e.,, averaged over one wavelength) elastic
constant, by themselves produce a quasi-Lorentzian,
broadened E(Q, w). These fluctuations become smaller
and smaller as the wavelength (i.e., as the number of
involved springs) increases and, in particular, from basic
statistics it is o A~!/2. This result leads to a Q* depen-
dence of the Brillouin linewidth at all Q values.

In order to check the validity of Eg. (6), we performed a
numerical calculation of E(Q, w). Atselected valuesof w,
and for different values of AK, we calculated the eigenvec-
tors of 50 different realizations of a disordered chain com-
posed of 20000 atoms, by using the Dyson-Schmidt (DS)
method [9]. Using Eq. (2), thefunctions E(Q, w) arethen
calculated as a function of Q and fitted by a Lorentzian;
representative examples are reported in Fig. 3 for the indi-
cated valuesof w and AK/K = 0.6. TheHWHM I" from
the fitting are reported in the inset of Fig. 3, together with
the prediction of Eq. (6) (dashed line), which reproduces
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FIG. 3. Examples of E(Q, w) vs Q at the indicated w vaues
calculated with the Dyson-Schmidt method [9] averaged over
50 redlizations of disordered linear chains (AK/K = 0.6) of
length N = 20000. The full lines are the best Lorentzian fits.
Inset: w dependence of the HWHM of the Lorentzian fit to
the E(Q, w) reported in the figure (full dots), compared with
the predictions from elastic constant fluctuations including (full
line) or not including (dashed line) the localization effects.

correctly the 9 behavior but is about a factor 2 too small.
This discrepancy is due to the omission of localization ef-
fects which, as mentioned before, are certainly effectivein
1D systems. Infact, in these systemsthe eigenvectors have
an exponential envelopein thetails, with adecay length L,

and this contributes a term F(LQ) = 1/L to the linewidth
of E(Q,w) [6]. Since localization also gives rise to a
Lorentzian line shape, we expect atotal broadening given
by r&%) = FEQ) + F}Q). Thevaluesof L were determined
numerically by fitting thetails of the eigenvectors produced
by the DS technique; as expected [6] we found L « w2,
ie, I'? « 02inthiscaseaso. Thefull linein the inset
of Fig. 3 represents the total HWHM ng) and isin quan-
titative agreement with the widths of E(Q, w) determined
numerically. Itisworth remarking that the effect of local-
ization is, to a large extent, peculiar to 1D systems and is
not relevant to 2D and 3D disordered systems [5].

The extension of the present results to 2D and 3D
cases is not straightforward. Indeed, it has been recently
numericaly found [10] that the Q dependence of the
Brillouin widths in spring-disordered 3D lattices is much
richer than the simple Q2 law found here for linear chains.
Their I'Q) is proportional to Q2 only at high Q, and shows
adeviation towards a 9 behavior inthe 9 — 0 limit. A
similar behavior of the Brillouin linewidth has also been
recently inferred for topologically disordered glasses [11],
where T'@) follows the Q% law at high Q and tends to a
higher O dependence at small Q. The exponent found at
low Q in Ref. [11], however, isnot aslarge as4. Thefact
that (contrary to the 1D casewhere I''@) o« 02 holdsin any
case) in 3D systems ') tends to grow faster than Q2 at
long wavelength can be rationalized asfollows. Ind > 1,
the effective elastic constant is no longer determined by
averaging the springs along a direction paralel to the
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propagation direction and extending for one wavelength,
but one has also to average over orthogonal directions.
For this reason, by increasing the wavelength, the number
of springs which determine the effective spring increases
faster than A (which is the case in the 1D), the effective
spring fluctuation decreases faster than A!/2, and, therefore,
the O dependence of T'Q) is faster than Q2. This effect
is more marked in the cases where the excitation wave
fronts are planar and well defined, i.e., at long rather than
at short wavelengths, and in disordered lattices rather than
in topologically disordered systems.

In conclusion, we presented a mechanism that re-
produces, in the 1D case, the Q? dependence of the
broadening of the Brillouin peaks, which is observed ex-
perimentally at high Q (Q = 1-10 nm™!) in alarge va
riety of glasses. According to the present model, this
broadening is a consequence of the spatial fluctuation of
the effective (i.e., averaged over one wavelength) elastic
constant. This fluctuation becomes smaller and smaller as
the wavelength (i.e., as the number of involved springs)
increases and, in particular, from basic dtatistics it is
« A~1/2, This result leads to a Q2 dependence of the
Brillouin linewidth at all O values.
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