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We report the first extensive experimental observation of the two-dimensional enstrophy cas
along with the determination of the high order vorticity statistics. The energy spectra we obtain
remarkably close to the Kraichnan Batchelor expectation. The distributions of the vorticity increm
in the inertial range, deviate little from Gaussianity, and the corresponding structure function expo
are indistinguishable from zero. It is thus shown that there is no substantial small scale intermit
in the enstrophy cascade, in agreement with recent theoretical analyses.

PACS numbers: 47.27.Gs, 05.20.Jj
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The enstrophy cascade is one of the most importa
processes in two-dimensional turbulence, and its inve
tigation, at a fundamental level, provides cornerstones
the analysis of atmosphere dynamics. The existence
this cascade was first conjectured by Kraichnan [1], a
later by Batchelor [2]. Both of them proposed that i
two-dimensional turbulence, enstrophy injected at a pr
scribed scale is dissipated at smaller scales, undergoin
cascading process at constant enstrophy transfer rateh;
this led to predicting ak23 spectrum for the energy, in
a range of scales extending from the injection to the d
sipative scale. Later, logarithmic corrections have be
incorporated in the analysis to ensure constancy of the
strophy transfer rate [3]. The advent of large compute
revealed surprising deviations from the classical expec
tion, especially in decaying systems [4–7]. It was soo
realized that in two-dimensional systems, long live cohe
ent structures inhibit the cascade locally and therefore t
self-similarity of the process, assumed to fully apply in th
classical approach, is broken. Expressions like “lamin
drops in a turbulent background” were coined to illustra
the role of coherent structures in the problem [4]. Alon
with the observations of unexpected exponents, mode
emphasizing on the role of particular vortical structure
[8,9], or based on conformal theory [10], suggested no
classical values. In the recent period however, high res
lution simulations [11–14] underlined that, provided lon
live coherent structures are disrupted, classical behav
holds; furthermore, theoretical studies [15,16] suggest
the absence of small scale intermittency, placing the d
rect enstrophy cascade in a position strikingly differen
from the three-dimensional energy cascade. The rec
soap film experiments, developing single point measur
ments of the velocity field [17–20], obtained spectral ex
ponents consistent with these views.

Nonetheless, investigating small scale intermittency
this problem requires measuring the statistics of quantiti
such as the vorticity increments, which has not been do
yet, neither in physical nor in numerical experiments. E
forts in this direction were made in the numerical stud
of Borue [12], but difficulties arose to obtain converge
results. An analysis of the enstrophy fluxes in the n
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merical experiment of Babianoet al. [21] led the authors
to underlining the presence of weak intermittency in th
enstrophy cascade; thus, although the theory on the pr
lem is at a well advanced stage (at least compared to
three-dimensional situation), it is not yet known, even
situations where self-similarity fully holds, to what ex
tent classical theory, based on mean field arguments
la Kolmogorov,” applies for the enstrophy cascade.
the physical experiment we present here, we analyze
statistics of vorticity increments, in a situation where co
herent structures have been disrupted. We show the d
ation from “Gaussianity,” for the small scale statistics o
the vorticity field, is moderate, and—more importantly—
scale independent; the corresponding structure funct
exponents are indistinguishable from zero, so that int
mittency is absent from the process, in agreement with
theoretical analysis of Ref. [16]. This observation, mad
on a physical system perhaps brings the problem, m
firmly, within the reach of a theoretical understanding,
situation rare in the field.

The experimental setup has been described in a se
of papers [22–24]. It appears as a formidable tool f
investigating fundamental issues of two-dimensional tu
bulence. It provides reliable data on quantities reput
hard to measure. We believe this is an interesting si
ation, since it would be unpleasant to elaborate a rat
nale for 2D turbulence, solely on virtual inputs. Briefly
speaking, the flow is generated in a square PVC ce
15 cm 3 15 cm. The bottom of the cell is made of a thin
(1 mm thick) glass plate, below which permanent ma
nets, 5 3 8 3 4 mm in size and delivering a magnetic
field of maximum strength 0.3 T, are placed. In order
ensure two dimensionality [25], the cell is filled with two
layers of NaCl solutions, each 2.5 mm thick, with dif
ferent densities, placed in a stable configuration, i.e., t
heavier underlying the lighter. Under typical operatin
conditions, the stratification remains unaltered for perio
of time extending up to 10 min. The interaction of a
electrical current driven across the cell with the magne
field produces local stirring forces. The current densi
vector applies horizontally, parallel to the side walls, an
owing to the electrical conductivities at hand, the resultin
© 1999 The American Physical Society
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electromagnetic forces are larger in the lower layer. The
flow is visualized by using clusters of 2 mm in size latex
particles, placed at the free surface, and the velocity fields
v�x, t� are determined using particle image velocimetry
(PIV) technique, implemented on 64 3 64 grids, each
interrogation cell incorporating 8 3 8 pixels; in physical
units, the spatial resolution is thus 2.5 mm. The temporal
resolution is excellent (4 3 1022 s), in comparison with
the typical flow time scales. We estimate the accuracy of
the velocity on the order of a few percent and that of the
vorticity on the order of 10%. In such experiments, the
dissipative scale for the enstrophy cascade—defined as
ld 2 h1�6n1�2 (where n is the kinematic viscosity and h

is the enstrophy pumping rate)— is on the order of 1 mm;
it is thus unresolved. Moreover, ld lying below the layer
thickness, it is reasonable to consider that the way enstro-
phy is dissipated in our system is not purely two dimen-
sional. Concerning measurement accuracy, we estimate,
from the measurement of local divergence, that the ac-
curacy on the velocity is a few percent and that on the
vorticity is 10%.

In the experiments we describe here, magnets are
arranged into four triangular aggregates, each including
roughly one hundred units, with the same magnetic
orientation, as shown schematically in Fig. 1. By doing
so, the electromagnetic forcing is defined on a large scale,
and its spatial structure does not favor any particular
permanent pattern.

The electrical current is unsteady: it is a nonperiodic,
zero mean, square waveform of amplitude equal to 0.75 A

FIG. 1. A sketch of the arrangement of the magnets (as
seen from above) and the time dependence of the electrical
current crossing the cell. Black units have the same magnetic
orientation; grey ones have the opposite one. The averaged
lapse of time between two successive current switches is 2.5 s.
(see Fig. 1). The corresponding Reynolds number—
defined as the square of the ratio of the forcing to the
dissipative scale— is on the order of 103; this estimate is
1 order of magnitude above the largest simulation per-
formed on the subject, using normal viscosity (see [12]).
In the statistically steady state, the instantaneous flow
pattern consists of transient recirculations of sizes com-
parable to one-fourth of the box size. The formation of
permanent large scale structures, which might tend to
break the self-similarity of the process, seems disrupted
by our particular forcing.

The instantaneous vorticity field in the statistically
stationary state is shown in Fig. 2. We see elongated
structures, in the form of filaments or ribbons, some of
them extending across a large fraction of the cell. At
variance with the decaying regimes, and consistently with
the above discussion, we have not seen any long live
vorticity concentration, i.e., persisting more than a few
seconds. This is further confirmed by a measurement
of the flatness of the vorticity distribution, a diagnostics
previously introduced by [13] and which is found slightly
above the Gaussian value in our case. The presence of
coherent structures would have been associated with much
larger values of this quantity. The isotropy of the vorticity
field is not obvious from the inspection of a single
realization, such as the one in Fig. 2; nonetheless, as will
be shown later, the overall anisotropy level, obtained after
statistical averaging, turns out to be reasonably small.

The spectrum of the velocity field, averaged over
200 realizations, in the statistically steady state, is shown
in Fig. 3. The forcing wave number kf � 0.6 cm21

corresponds to the location of the maximum of the energy
spectrum; it is associated with an injection scale lf � 2p

kf

estimated to 10 cm, a value consistent with the size of our
permanent magnet clusters. The wave number associated
with the stratified fluid layer may be defined as kl �

2p

b �
12 cm21 (where b is the fluid thickness). This wave
number, together with the sampling wave number, which

FIG. 2. A particular realization of the vorticity field, in the
statistically steady state; the grey scale is linear in the vorticity.
3419
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FIG. 3. Energy spectrum of the velocity field, averaged
over 200 realizations of the velocity field in the statistically
stationary state; the inset shows the enstrophy transfer rate
D�k�, calculated in similar experimental conditions.

is 25 cm21, is well outside the region of interest. Figure 3
shows that in the high wave-number region, i.e., above
9 cm21, the spectrum is flat. This region is dominated by
white noise; it reflects a limitation in the PIV technique to
resolve low velocity levels at small scales.

The interesting feature is that there exists a spectral
band, lying between kf and kmax � 7 cm21, uncontami-
nated by a possible interaction with the layer wave num-
ber, in which a power law behavior is observed. The
corresponding exponent is close to 23. A direct measure-
ment of the exponent, performed by using a least square
fit in the scaling region, leads to proposing the following
formula for the spectrum:

E�k� � k23.060.2.

The exponent we find is thus close to classical expecta-
tion. There is no steepening effect of the spectrum, which
could be attributed, as in decaying systems, to the pres-
ence of coherent structures. Further analysis of the vor-
ticity field shows homogeneity and stationarity, of the
process. Isotropy is also obtained, albeit only roughly, as
shown in Fig. 4: to estimate the anisotropy level, we fol-
low circles, embedded in the inertial range, in the spectral
plane of Fig. 4, and determine by how much the spectral
energy departs from a constant value along such circles.
This leads to an anisotropy level on the order of 15% in
the central region of the inertial range. Determining the
Kraichnan Batchelor constant is a delicate task, which en-
tirely relies on the measurement of the enstrophy pumping
rate h. The constant we discuss here, called C0, is defined
by expressing the energy spectrum in the form

E�k� � C0h2�3.

To measure C0, we have measured the spectral enstropy
transfer rate from below k to above k, 2D�k�; the result is
3420
FIG. 4. Iso-levels of the energy spectrum in the wave-number
space (kx , ky) defining, respectively, the horizontal and vertical
axes of the plot. The boundaries of the rectangle, along x axis
corresponds to kx � 612 cm21. The grey scale is periodic.
The two peaks at kx � 60.6 cm21 around the center signal the
forcing.

shown in the inset of Fig. 3. D�k� is found positive above
1 cm21; this covers most of the range where k23 spectral
law holds, and thus confirms the cascade is forward. To
determine h, we further average out D�k�, between kf and
kmax. This procedure provides the following estimate for
the Kraichnan Batchelor constant C0:

C0 � 1.4 6 0.3 .

This estimate agrees with that found in the high resolution
study of Ref. [12], for which values ranging between 1.5
and 1.7 have been proposed. We provide here the first ex-
perimental measurement ever achieved for this constant.

We now turn to the intermittency problem. Here we
consider the statistics of the vorticity increments, a central
quantity considered in the recent analytical approaches to
the enstrophy cascade [15,16]. Figure 5 shows a set of
five distributions (pdf) of the vorticity increments, ob-
tained for different inertial scales, ranging between 2 and
9 cm. As usual, in order to analyze shapes, the pdfs have
been renormalized to impose their variance as equal to
unity. The shapes of the pdfs are not exactly the same,
but it is difficult to extract a systematic trend with the
scale. Within experimental error, they seem to collapse

FIG. 5. Normalized distributions of vorticity increments, for
five separations of r: 2, 3, 5, 7, and 9 cm.
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FIG. 6. Structure functions of the vorticity increments, for
various orders comprised between 2 and 10.

onto a single curve; the tails of such an average distribu-
tion are broader than a Gaussian curve, and the deviations
have a moderate amplitude. It is difficult here, from the
inspection of the distributions, to reveal the presence of
intermittency in the enstrophy cascade.

The analysis of the structure functions of the vorticity,
shown in Fig. 6, confirms this statement. These structure
functions are defined by

Sp�r� � ��v�x 1 r� 2 v�x��p	

in which x and r are vectors, and r is the modulus of
r. The brackets mean double averaging, both in space,
throughout the plane domain, and in time, is between 20
and 280 s. We use here 105 data points to determine
the structure functions; this allows us to determine up to
twelfth order, because of the near Gaussianity of the pdfs.
Figure 6 thus represents a series of vorticity structure
functions Sp�r�, obtained in such conditions, emphasizing
on the inertial domain, i.e., with r varying between 1
and 10 cm. The structure functions weakly vary with
the scale, indicating the exponents are close to zero.
The corresponding values fall in the range 20.05, 0.15,
for p varying between 2 and 10; owing to experimental
uncertainty, this is indistinguishable from zero. We thus
obtain here a result fully compatible with the classical
theory, for which the exponents are predicted to be exactly
zero at all orders. Concerning logarithmic deviations,
such as those proposed by the theory [3,16], it is difficult
to draw a firm conclusion at the moment.

To summarize, we have performed, for the first time in
a physical system, an extensive observation of the enstro-
phy cascade. Previous experiments inferred its existence
from the interpretation of k23 spectra. We provide here
a complete observation, along with a measurement of the
Kraichnan Batchelor constant, and a determination of the
high order vorticity statistics, a crucial quantity to con-
sider in the intermittency problem. We obtain that classi-
cal theory is strikingly successful. There is no substantial
small scale intermittency and the vorticity statistics depart
only moderately from Gaussianity. Because of these par-
ticular features, one may perhaps hope this problem be
brought to theoretical understanding. The role of coher-
ent structures, long emphasized on, is indeed important
and interesting, but should probably be considered as a
separate issue. Note finally these conclusions agree with
a recent numerical study [26].
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