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Sunspot Cycle: A Driven Nonlinear Oscillator?
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A property of nonlinear oscillators—mutual dependence between their instantaneous amplitude and
frequency—is tested in the yearly and monthly records of the sunspot numbers using the histogram-
adjusted isospectral surrogate data and the Barnes model as the autoregressive moving average
surrogates. The instantaneous amplitudes and frequencies are obtained by means of the analytic signal
approach using the discrete Hilbert transform. In several tests the amplitude-frequency correlation has
been found significant on levels ranging from p , 0.03 to p , 0.07, which supports the hypothesis of
a driven nonlinear oscillator as a mechanism underlying the sunspot cycle.

PACS numbers: 05.45.Tp, 95.10.Fh, 95.75.Pq, 96.60.Qc
The historical data of the sunspot index have been at-
tracting researchers for more than a century. In 1852
Wolf [1] reported the now well-known 11-year cycle. Of
course, the sunspot cycle is not strictly periodic, but fluc-
tuations in its amplitude as well as in its frequency (i.e.,
in the cycle duration) occur. Therefore researchers have
turned towards stochastic models in order to make pre-
dictions of the future behavior of the sunspot cycle (see
[2], and references therein). On the other hand, develop-
ment in nonlinear dynamics and theory of deterministic
chaos, namely methods and algorithms for analysis and
prediction of (potentially) nonlinear and chaotic time se-
ries, have naturally found their way into the analyses of
the sunspot series. Several authors ([3,4], and references
therein) have claimed an evidence for the deterministic
chaotic origin of the sunspot cycle, based on estimations
of correlation dimension, Lyapunov exponents, and an in-
crease of a prediction error with a prediction horizon. The
dimensional algorithms, however, have been found unre-
liable when applied to relatively short experimental data,
and properties consistent with stochastic processes (col-
ored noises) such as autocorrelations can lead to spurious
convergence of dimensional estimates [5]. Similar behav-
ior has been observed also for Lyapunov exponent estima-
tors [6,7]. And the increase of a prediction error with an
increasing prediction horizon is not a property exclusive
for chaos, but it can also be observed in systems with a
deterministic skeleton and an intrinsic stochastic compo-
nent (“dynamical noise”).

Looking for deterministic chaos in experimental time
series, a statistical technique of surrogate data [8] based
on rejection by a statistical test of an appropriate null
hypothesis has become a standard in nonlinear time se-
ries analysis. Applying this approach, the deterministic
chaotic origin of the sunspot cycle has not been con-
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firmed, or, at least, the authors are not aware of any
published study presenting a solid statistical evidence for
chaos in the sunspot cycle. Some researchers [9,10] have
been able to detect (unspecified) nonlinearity in this data,
however, no specific properties supporting the hypothesis
of a low-dimensional chaotic attractor have been found.
It is also questionable whether the hypothesis of a closed
stationary autonomous system possessing a strange attrac-
tor is a reasonable explanation of the dynamics underlying
the solar cycle. It might be reasonable, on the other hand,
to search for a weaker hypothesis than a chaotic attractor,
which, however, would provide a physical meaning to the
previously confirmed (unspecified) nonlinearity [9,10] in
the sunspot cycle dynamics. In particular, we will demon-
strate that the sunspot cycle possesses a significant corre-
lation between its instantaneous amplitude and frequency,
which is a property of nonlinear oscillators, and thus we
will provide an evidence for a nonlinear oscillator (with
possibly random driving) underlying the dynamics of the
sunspot cycle, unless the amplitude-frequency relation is
explained by a different mechanism.

The instantaneous amplitude and phase of a signal s�t�
can be determined by using the analytic signal concept of
Gabor [11], recently introduced into the field of nonlinear
dynamics within the context of chaotic synchronization
by Rosenblum et al. [12]. The analytic signal c�t� is a
complex function of time defined as

c�t� � s�t� 1 jŝ�t� � A�t�ejf�t�, (1)

where the function ŝ�t� is the Hilbert transform of s�t�

ŝ�t� �
1
p

P.V.
Z `

2`

s�t�
t 2 t

dt . (2)

(P.V. means that the integral is taken in the sense of
the Cauchy principal value.) A�t� is the instantaneous
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amplitude and the instantaneous phase f�t� of the signal
s�t� is

f�t� � arctan
ŝ�t�
s�t�

. (3)

The instantaneous frequency v�t� is the derivative �f�t�
of the phase f�t�.

As a demonstrative example of a nonlinear oscillator
(not a model for the sunspot cycle) we will consider the
Duffing oscillator

ẍ 1 0.05 �x 1 x 1 x3 � F�t� . (4)
If F�t� � 0 and without the cubic member x3, Eq. (4)
represents a damped linear oscillator with a constant fre-
quency and an exponentially decreasing amplitude. The
presence of the nonlinear (cubic) member x3 in Eq. (4)
leads to a time dependent frequency, and considering
again F�t� � 0, both the amplitude A�t� and frequency
v�t� exponentially decrease (Figs. 1a and 1b). Now, con-
sider that the nonlinear oscillator (4) is driven by a ran-
dom driving force F�t�. The relation between A�t� and
v�t� is a nonlinear function and may vary in time, how-
ever, the level of the correlation between A�t� and v�t�
depends on the driving force: With a relatively weak
driving (Fig. 1c), A�t� and v�t� are almost perfectly corre-
lated (Fig. 1d), with a stronger driving force F�t� (Fig. 1e)
some differences between A�t� and v�t� emerge, however,
A�t� and v�t� are still correlated (Fig. 1f).

A possible amplitude-frequency correlation (AFC) in
the sunspot cycle, in particular, the importance of the
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FIG. 1. (a) A solution of the nonlinear Duffing oscillator with-
out any external driving force, and (b) the related instantaneous
amplitude (thick line) and frequency (thin line). (c) A solution
(thick line) of the nonlinear Duffing oscillator with a random
driving force F�t� (thin line), and (d) the related instantaneous
amplitude (thick line) and frequency (thin line). (e) A solution
(thick line) of the nonlinear Duffing oscillator with a stronger
random driving force F�t� (thin line), and (f ) the related instan-
taneous amplitude (thick line) and frequency (thin line).
amplitude in determining the length of the related cycle
has already been noted in the 1930s by Waldmeier
[13] and recently discussed by Hathaway et al. [14]. In
this Letter we demonstrate that the amplitude-frequency
correlation found in the sunspot cycle is probably a
nonrandom phenomenon and propose its explanation by
an underlying nonlinear dynamical system. We have used
the yearly and monthly sunspot numbers from the Sunspot
Index Data Center [15].

The yearly sunspot numbers series from the years
1700–1997 A.D. (Fig. 2a) has been filtered by a simple
moving average (MA) bandpass filter: First, the MA’s
from a 13-sample window have been subtracted from the
data in order to remove slow processes and trends, and
then a 3-sample MA smoothing has been used in order
to remove high-frequency components and noise. Then
the discrete version of the Hilbert transform (2) using
the window length of 25 samples has been applied in
order to obtain the instantaneous amplitude A�t� and the
instantaneous phase f�t�. For obtaining a more robust
estimation of the instantaneous frequency v�t� than the
one yielded by a simple differencing of the phase f�t�,
the robust linear regression [16] in a 7-sample moving
window has been used. Finally, the series of A�t� and
v�t� have been smoothed using a 13-sample MA window.
The resulting series of the instantaneous amplitude and
frequency of the yearly sunspot numbers, plotted in
Fig. 2b, yield the crosscorrelation equal to 0.505. Does
this value mean that the amplitude and frequency of
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FIG. 2. (a) The yearly sunspot numbers series (1700–
1997 A.D.) and (b) the related instantaneous amplitude (thick
line) and frequency (thin line). (c) A realization of the
HAFT surrogate data for the “last” 256 samples, and (d) the
related instantaneous amplitude (thick line) and frequency (thin
line). (e) A 298-sample realization of the Barnes model and
(f) the related instantaneous amplitude (thick line) and fre-
quency (thin line).
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the sunspot cycle are correlated as a consequence of an
underlying dynamics, or could this correlation occur by
chance? Searching for an answer, we test the statistical
significance of this correlation by using the approach
of surrogate data [8]. We generate a large number of
realizations of processes which mimic some properties
of the sunspot numbers series, however, which do not
possess any systematic (nonzero) AFC. A nonzero
amplitude-frequency correlation in such processes can
only occur randomly in some of their realizations. Thus
we estimate the probability of a random occurrence of the
AFC found in the sunspot data, considering the chosen
null hypothesis (surrogate model).

In the first kind of the surrogate tests we apply
isospectral, or Fourier transform (FT) surrogates and
histogram adjusted isospectral (HAFT) surrogates. (In
[8] the term “amplitude-adjusted”—AAFT—surrogates
is used.) The isospectral surrogates are realizations of
a linear stochastic process which has the same spectrum
as the studied data. In this case, using the fast Fourier
transform (FFT) [16] which requires the number of
samples equal to a power of 2, we perform two tests,
using the “first” and the “last” 256 samples, i.e., the
subseries of the whole 298 sample series obtained by
cutting away 42 samples at the end, or at the beginning,
respectively, from the whole yearly sunspot numbers
record. Thus, in each test, the surrogate data replicate
the sample spectrum of the related 256-sample subseries.
The FT surrogates are obtained by computing FFT of
the raw data, then randomizing the phases of the Fourier
coefficients, but keeping the magnitudes (of the Fourier
coefficients, i.e., the spectrum) unchanged, and computing
the inverse FFT into the time domain. The resulting
series is a realization of a linear stochastic process
with the same spectrum as the sample spectrum of
the related segment of the sunspot numbers series. In
other words, the FT surrogates are data with cycles
oscillating with the same frequencies as the sunspot
cycles, however, not possessing any systematic amplitude-
frequency correlation. Using different sets of the random
Fourier-coefficient phases, different realizations of the
surrogate data can be generated.

The FT surrogates tend to have a Gaussian distribution
which is not always the case of the tested data. In order
to avoid a possible influence of different histograms of the
data and the surrogates, the histogram adjusted FT surro-
gates are constructed. In this case, the raw data undergo
a nonlinear transformation which leads to a Gaussian dis-
tribution of the transformed data (“gaussianization”—see
[9] and references within). The gaussianized data are used
to generate the FT surrogates as described above, and the
obtained surrogate data are transformed in order to have
the same histogram as the original raw data.

The (HA)FT surrogates are generated from the raw
(unfiltered) 256-sample segments of the sunspot data.
Also, the 256-sample subseries are used for estimating
the amplitude-frequency correlation related to the particu-
3408
lar subseries, applying the procedures described above.
Then, each realization of the (HA)FT surrogates, gener-
ated with respect to the raw data, undergoes the same
processing as the raw data, i.e., the MA bandpass filter-
ing, the Hilbert transform and the robust linear regres-
sion for the v�t� estimation, and the final A�t� and v�t�
smoothing are performed before computing the AFC for
each surrogate realization. Then the absolute values of
the AFC’s for 150 000 surrogate realizations are evalu-
ated in order to assess the significance of the related AFC
value found in the sunspot data. The first 256-sample sub-
series of the sunspot yearly numbers yields the AFC equal
to 0.605, while the mean value of the absolute AFC for
the HAFT surrogate set is 0.26 with the standard devia-
tion (SD) equal to 0.17. In usual surrogate tests the sig-
nificance is derived from the difference between the data
value and the surrogate mean, divided by the surrogate
SD, provided normal distribution of the surrogate values.
Having generated the large amount of the surrogate repli-
cations, here we directly estimate the p value of the test,
i.e., the probability that the assessed correlation occurred
by chance (randomly) within the chosen null hypothesis
(surrogate model), by simply counting the occurrences in
the surrogate set of absolute AFC values greater than or
equal to the assessed raw data value, i.e., 0.605 in this
case. The number obtained is 3637, which is equal to
2.43%. Statistically speaking, the test result is significant
on p , 0.03, or, in other words, the probability that the
amplitude-frequency correlation found in the studied seg-
ment of the sunspot data occurred by chance (as a random
event) is smaller than 3%.

Processing the “last” 256-sample segment of the yearly
sunspot numbers, the obtained AFC is equal to 0.532,
while the values from the HAFT surrogates are the same
as above, however, the p value in this case is 6.58%.
Still, we can conclude that the test result is significant on
p , 0.07. An example of the HAFT surrogate realization
is plotted in Fig. 2c, its instantaneous amplitude and
frequency in Fig. 2d.

The results from the tests using simple FT surrogates
(i.e., without the histogram adjustment) are practically
the same as those from the above HAFT surrogates.
Testing the monthly sunspot numbers (1749–1997 A.D.),
the segments of (“first” and “last”) 2048 samples were
used. The same data processing has been applied as
described above in the case of the yearly data with the
window lengths equivalent in real time, i.e., multiplied
by 12 in number of samples. The obtained results are
perfectly equivalent to those yielded by the yearly data,
i.e., p , 0.03 and p , 0.07 for the first and the last
2048-sample segments, respectively.

The HAFT surrogates replicate the spectrum and the
histogram of the sunspot data, however, do not reflect
temporal asymmetry typical for the sunspot cycle behav-
ior. Therefore, we employ also another kind of surrogate
data, generated by the Barnes model [17] which incorpo-
rates the structure of an autoregressive moving average
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ARMA(2,2) model with a nonlinear transformation:

zi � a1zi21 1 a2zi22 1 ai 2 b1ai21 2 b2ai22 , (5)

si � z2
i 1 g�z2

i 2 z2
i21�2, (6)

where a1 � 1.906 93, a2 � 20.987 51, b1 � 0.785 12,
b2 � 20.406 62, g � 0.03 and ai are IID Gaussian
random variables with zero mean, and SD � 0.4. The
nonlinear transformation (6) ensures that the generated
series remains asymmetric and positive and tends to
increase more rapidly than it decreases (Fig. 2e), which
are the properties observed in the sunspot data. Moreover,
the stochastic Barnes model can mimic the correlation
integrals [18] and the phase portraits [19] obtained from
the sunspot series. No systematic amplitude-frequency
correlation, however, is present in the series obtained
from the Barnes model (Fig. 2f). In the test, 150 000
298-sample realizations of the Barnes model have been
generated and processed by the same way as the sunspot
series. The mean absolute AFC is equal to 0.21, SD �
0.15, comparison with the AFC obtained for the whole
298-sample yearly sunspot series (AFC � 0.505) yields
the p value equal to 4.36%. Thus, considering the Barnes
model, the probability that the whole yearly sunspot series
AFC � 0.505 occurred by chance is p , 0.05.

Using two different types of stochastic models which
replicate some properties of the sunspot cycle we have
obtained a statistical support for the hypothesis that the
amplitude-frequency correlation observed in the sunspot
cycle did not occur by chance (as a random event) but is
probably a property of an underlying dynamical mecha-
nism. Well-known systems, possessing this property, are
nonlinear oscillators, in which a significant AFC can be
observed also in cases of external, even random, driving
force. Therefore the presented results can be considered
as a statistical evidence for a nonlinear oscillator (with
possibly random driving) underlying the dynamics of the
sunspot cycle, unless the amplitude-frequency relation is
explained by a different mechanism.

Although no particular model for the solar cycle has
been proposed here, the presented rigorous statistical
evidence for a nonlinear dynamical mechanism underlying
the sunspot cycle can be understood as a first step
in bridging the gap between statistical analyses of the
experimental sunspot data (dominated by linear stochastic
methods) and physical models such as nonlinear dynamo
models [20,21] (developed only on a qualitative level).
Statistical comparison of the data with the latter models
would follow, with the aim to construct a realistic data-
driven model for the solar cycle.
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