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Conformal Phase Transition and Fate of the Hidden Local Symmetry in Large Nf QCD
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It is observed that the hidden local symmetry (HLS) for vector mesons in ordinary QCD with smaller
Nf plays the role of the “Higgsed magnetic gauge symmetry” for the Seiberg duality in SUSY QCD.
For largeNf where the conformal phase transition with chiral restoration and deconfinement is expected
to take place, we find that the HLS model also exhibits chiral restoration by loop corrections (including
the quadratic divergence) in a manner similar to that in theCPN21 model, provided that the bare HLS
Lagrangian respects Georgi’s vector limit at a certainNf (�7).

PACS numbers: 12.38.Aw, 11.10.Hi, 11.30.Qc, 12.39.Fe
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Increasing attention has been paid to duality in var
ous contexts of modern particle theory. Seiberg foun
“electric-magnetic” duality inN � 1 supersymmetric
(SUSY) QCD with Nc colors andNf flavors [1]: For
the region 3

2Nc , Nf , 3Nc (“conformal window”)
in SUSY QCD, there exists a “magnetic theory” with
SU(Nf 2 Nc) gauge symmetry which is dual to the
original SU(Nc) theory regarded as the “electric theory”
Although the origin of the magnetic gauge symmetr
(“induced at the composite level”) is not obvious from th
original theory, both theories in fact have an infrared (IR
fixed point with exact conformal symmetry and with the
same IR physics. WhenNf decreases, the electric theory
becomes stronger in IR, while the magnetic theory ge
weaker, with the magnetic gauge group being reduc
through the Higgs mechanism. DecreasingNf further
beyond the conformal window, we finally arrive a
Nf � Nc where the magnetic theory is in complete Higg
phase (reduced to no gauge group), which correspon
to the complete confinement (and spontaneously brok
chiral symmetry) of the electric theory.

A similar conformal window may also exist in the ordi-
nary (non-SUSY) QCD with masslessNf flavors. There
actually exists an IR fixed point at two-loop beta functio
for large Nf (, 11

2 Nc): When Nf increases close to the
point 11

2 Nc, the coupling at the IR fixed point become
very small so that the deconfinement and the chiral sym
metry restoration are expected to occur [2]. Based
this IR fixed point, it was found [3] through the modi-
fied ladder Schwinger-Dyson (SD) equation that chir
symmetry restoration in fact takes place forNf such that
Ncr

f , Nf ,
11
2 Nc, whereNcr

f � 4Nc(� 12 for Nc � 3).
In Ref. [4] this chiral restoration atNcr

f was further identi-
fied with “conformal phase transition” which was charac
terized by the essential singularity scaling. Moreover, th
lattice simulation indicates that the chiral restoration do
occur atNcr

f � 7 [5].
Here we recall that, for smallNf , the vector mesons

such as ther meson can be regarded as the dynamic
gauge bosons of hidden local symmetry (HLS) [6,7] i
the nonlinear sigma model (chiral Lagrangian). The HL
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is completely broken through the Higgs mechanism as
origin of the vector meson mass. This gauge symmetr
induced at the composite level and has nothing to do w
the fundamental color gauge symmetry. Instead, the H
is associated with the flavor symmetry.

In this paper we shall find that the Seiberg duality
realized also in the ordinary (non-SUSY) QCD throug
the HLS. This will shed new light on the nonperturbativ
dynamics of the real-life QCD.

We first observe that, for smallNf , the SU(Nf) HLS is
in complete Higgs phase and yields the same IR phys
as SU(Nc) QCD in the confinement/chiral-symmetry
breaking phase, and plays the role of the “Higgs
magnetic gauge theory” dual to the “confined elect
gauge theory” (QCD) in the spirit of Seiberg duality.

What then happens to the HLS whenNf becomes large
so that QCD undergoes the conformal phase transit
into the conformal window with deconfinement/chira
restoration? In order for the duality between QCD a
the HLS to be consistently satisfied, there should be
way that the chiral restoration takes place for largeNf

also in the HLS theoryby its own dynamics. Actually, it
is known that, in theCPN21 nonlinear sigma model base
on the coset space SU(N)�SU(N 2 1) 3 U(1), the SU(N)
symmetry is restored by the loop effects and the U1)
gauge symmetry is dynamically generated accordin
(see, e.g., Ref. [7]). This suggests that the HLS c
provide the chiral restoration by its own dynamics.
other words, due to the dynamics of the HLSthe quantum
theory is in the symmetric phase even if the bare theory is
written as if it were in the broken phase.

Now our task is to find a condition for the bare theo
of the HLS to realize chiral restoration for largeNf

in the quantum theory. One clue is the fact [8] th
through the renormalization-group equations (RGE’s)
HLS approaches the Georgi’s vector limit [9] in th
idealized high energy limit. The vector limit is actuall
the ultraviolet fixed point of the RGE’s.

We then propose that taking the Georgi’s vector lim
[9] in the bare theory of the HLS at a certain critical valu
Ncr

f is a consistent way to incorporate the conformal pha
© 1999 The American Physical Society
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transition into the HLS. In other words, the quantum
theory provides the chiral restoration when the bare
theory approaches the vector limit as Nf ! Ncr

f .
Let us first describe the HLS model based

on the Gglobal 3 Hlocal symmetry, where G �
SU�Nf�L 3 SU�Nf�R is the global chiral symmetry
and H � SU�Nf�V is the HLS. (The flavor symmetry is
the diagonal sum of Gglobal and Hlocal.) The Lagrangian
is [6,7]

L � F2
p tr�â�mâ

m
�� 1 F2

s tr�âkmâ
m

k � 1 Lkin�rm� , (1)

where Lkin�rm� denotes the kinetic term of the gauge
boson rm of the HLS (vector meson) and

â
m
�

k

�
≥
DmjL ? j

y
L 7 DmjR ? j

y
R

¥
��2i� . (2)

Two SU(Nf)-matrix valued variables jL and jR trans-
form as jL,R�x� ! j

0
L,R�x� � h�x�jL,R�x�gy

L,R, where
h�x� [ Hlocal and gL,R [ Gglobal. These variables
are parametrized as jL,R � eis�Fs e7ip�Fp , where
p � paTa denotes the Nambu-Goldstone (NG) boson
associated with the spontaneous breaking of G chiral
symmetry and s � saTa denotes the NG boson ab-
sorbed into the HLS gauge boson. Fp and Fs are
relevant decay constants, and the parameter a is defined
as a � F2

s�F2
p . The covariant derivatives of jL,R are

defined by DmjL,R � ≠mjL,R 2 igrmjL,R, where g is
the HLS gauge coupling. In this paper we use p for the
pseudoscalar NG bosons associated with the G breaking
and r for the HLS gauge bosons even for Nf fi 2.

We adopt the background gauge field method to obtain
quantum corrections to the parameters. This method was
used in the chiral perturbation theory (ChPT) [10], and
was applied to the HLS in Ref. [11]. We define two
decay constants Fp and Fs from two-point functions of
the background fields â

m
� and â

m

k , respectively. The HLS
gauge coupling g is determined from a two-point function
of the gauge field strength. We note that the would-be
NG boson s does contribute in the Rj-like gauge fixing
[8] or the background gauge fixing [11].

To handle the quantum effects properly and relate
parameters in the bare theory defined at the cutoff scale
with those in the quantum theory at lower energy scale,
we use the RGE’s in the Wilsonian sense which include
the quadratic divergences in addition to the logarithmic
divergences. As is usual, inclusion of only the logarithmic
divergences is not adequate to study the phase structure.
Actually, in the above CPN21 model in D (2 , D ,

4) dimensions it was essential to include the power
divergence which is the quadratic divergence in four
dimensions. As we shall show, the vector limit is still the
fixed point even if we include the quadratic divergences.

The RGE’s for g and a above the r mass scale
with only the logarithmic divergences are shown in
Ref. [8] where the parameters renormalized in the mass
independent scheme were studied and the vector limit
was shown to be realized in the high energy limit. Here
we further include the quadratic divergences, since we
need RGE’s in the Wilsonian sense to study the phase
structure. Since a naive momentum cutoff violates the
chiral symmetry, we need a careful treatment of the
quadratic divergences. Thus we adopt the dimensional
regularization and identify the quadratic divergences with
the presence of poles of ultraviolet origin at n � 2 [12].
We show the diagrams contributing to two-point functions
of â

m
� and â

m

k in Figs. 1 and 2 [13]. The resultant RGE’s
above the r mass scale are given by

m
dF2

p

dm
� C�3a2g2F2

p 1 2�2 2 a�m2� , (3)

m
dg2

dm
� 2C

87 2 a2

6
g4, (4)

m
da
dm

� 2C�a 2 1�
∑
3a�a 1 1�g2 2 �3a 2 1�

m2

F2
p

∏
,

(5)

where C � Nf��2�4p�2� and m is the renormalization
scale. The first term of Eq. (3) comes from the logarith-
mic divergences of the diagrams in Figs. 1(a) and 1(b),
while the second term comes from the quadratic diver-
gences of the diagrams in Figs. 1(b) and 1(c). The RGE
for a is obtained from those for Fp and Fs through
the definition a � F2

s�F2
p . We note here that the above

RGE’s agree with those obtained in Ref. [8] when we ne-
glect the quadratic divergences. As is easily read from the
RGE’s (4) and (5) the Georgi’ s vector limit [9] �g, a� �
�0, 1� is the fixed point. The mass of r is determined by
the on-shell condition: m2

r � a�mr�g2�mr�F2
p �mr�.

Now, let us study how the quantum theory approaches
to the chiral symmetric phase when Nf becomes larger.
Here and henceforth we write the dependence on Nf

as well as on the scale m explicitly. Fp in the bare
theory can be identified with that at the cutoff scale in
the Wilsonian renormalization scheme. This cutoff scale,
say L, generally depends on Nf , so we express this by
Lf � L�Nf�. As we stated before, the bare theory is
written as if it were in the broken phase. Then the
parameter Fp at the cutoff scale does not vanish, and it
is natural to assume that Fp �Lf� is of the order of Lf ,

Fp �Lf ; Nf� 	 Lf . (6)

Actually, the phase is determined by studying whether
Fp �0; Nf�, which is the decay constant of NG bosons in
the quantum theory, vanishes or not. The order parameter

FIG. 1. Diagrams contributing to two-point function of â
m
�.
3375



VOLUME 83, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 25 OCTOBER 1999
FIG. 2. Diagrams contributing to two-point function of â
m

k .

Fp �0; Nf � will vanish due to the loop effects of r and
p [14]. This phenomena actually occurs if the bare
theory approaches to the vector limit as Nf becomes
large. Since the vector limit is the fixed point, we may
solve the RGE for Fp Eq. (3) in the vector limit with
taking �g, a� � �0, 1�. This RGE tells us that Fp does not
diverge, and hence we conclude that mr � 0 in the vector
limit. Thus the RGE (3) with �g, a� � �0, 1� relates the
order parameter Fp �0; Nf� with Fp �Lf ; Nf� as [15]

F2
p �mr � 0; Nf�

L
2
f

�
F2

p

°
Lf ; Nf

¢
L

2
f

2
Nf

2�4p�2 . (7)

Since Fp �Lf ; Nf� 	 Lf , the right-hand side (RHS) of
Eq. (7) will vanish for a large value of Nf . The chiral
symmetry in the quantum theory is restored at a certain
flavor Ncr

f when we take the vector limit in the bare
theory,

Fp �0; Nf��Lf !
Nf!Ncr

f

0 . (8)

This is our main result.
Let us next calculate the critical flavor Ncr

f . Here we
use the following “physical” inputs for Nf � 3 with tak-
ing a � 1 [16]: Fp �0; Nf � 3� � 88 MeV determined in
the chiral limit [10]; mr�Nf � 3� � 770 MeV; L�Nf �
3� � 4pFp �0; Nf � 3� � 1.1 GeV from the naive di-
mensional analysis [17]. Below the mr scale, r decou-
ples and hence Fp runs by the loop effect of p alone.
The relevant Lagrangian with least derivatives is given by
the first term of Eq. (1), and the diagram contributing to
F2

p is shown in Fig. 1(c). The resultant RGE for Fp is
given by �dF2

p ���dm2� � 2C. Then the order parameter
Fp �0; Nf� is related to Fp ���mr�Nf�; Nf��� by

F2
p �0; Nf� � F2

p ���mr�Nf�; Nf��� 2
Nf

�4p�2 m2
r�Nf� . (9)

The above input leads to Fp �L3; Nf � 3� � 171 MeV
and g�mr ; Nf � 3� � 5.6, the latter of which is consis-
tent with the values of g determined by assuming the
saturation of the ChPT parameter L9�mr� by the vector
mesons [18]; g�mr; Nf � 3� � 6.0 6 0.4. For simplic-
ity we assume that Lf and Fp �Lf ; Nf��Lf do not depend
on Nf ; F2

p�Lf ; Nf��L
2
f � 0.024. Then the critical flavor

is determined from Eq. (7) as

Ncr
f � 7.6 , (10)

which is somewhat similar to the lattice calculation [5].
To study how Fp approaches to zero as Nf is increased

we first need to determine how the bare parameters
3376
g�Lf ; Nf� and a�Lf ; Nf� approach to the values in the
vector limit [19]. In the present analysis let us fix a � 1
for simplicity [20]. We adopt the following behavior of
the gauge coupling approaching to zero:

g2�Lf ; Nf� � ḡ2e, e � 1�Nf 2 1�Ncr
f , (11)

where ḡ is independent of Nf [21]. We present a
numerical calculation of the Nf dependence of Fp �0; Nf�
in Fig. 3. This clearly shows that Fp �0; Nf� smoothly
goes to zero [22] at Ncr

f � 7.6. Thus we conclude that the
quantum theory provides the chiral restoration when the
bare theory approaches to the vector limit as Nf ! Ncr

f .
Several comments are in order.
In this paper we numerically studied the Nf depen-

dence of Fp �0; Nf�. However, the RGE’s are analytically
solvable when we take a � 1, and the critical behaviors
of Fp �0; Nf� and mr�Nf� can be studied analytically. A
careful analysis [23] of the solutions of RGE’s with the
condition (11) leads to the fact that when Nf ! Ncr

f ,
g2���mr�Nf�; Nf��� 	 e, F2

p ���mr�Nf�; Nf����L
2
f 	 e, and

hence m2
r�Nf��L

2
f 	 e2. This implies that the second

term of the RHS of Eq. (9) approaches to zero faster than
the first term. Thus we obtain the critical behavior of the
order parameter as F2

p �0; Nf��L
2
f 	 e [24]. This shows

that the physical parameters Fp �0� and mr approach
zero in the power behavior, which is originated from the
fact that we have used the one-loop perturbative RGE’s.
If, on the other hand, we use some nonperturbative
treatment, we might obtain an essential singularity scaling
shown by an analysis of the SD equation [3,4].

In the present analysis we took Fp �Lf��Lf as well
as Lf as a quantity independent of Nf . At the scale of
Lf we would like to match the HLS with QCD, so that
the Nf dependence of Lf may be extracted from QCD.
However, as we can easily read from Eq. (7), imposing
an Nf dependence (increasing or decreasing) of Lf , with
Fp �Lf��Lf fixed, does not change the critical flavor. On
the other hand, if Fp �Lf��Lf depends on Nf , the critical

FIG. 3. Nf dependence of F2
p �0; Nf �, normalized by

F2
p �0; Nf � 3�. The constant c � 0.16 is determined from the

physical inputs for Nf � 3 discussed in the text.
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flavor will be slightly changed. For example, we can
include the effect of the anomalous dimension obtained
from QCD by using the Pagels-Stokar formula for Fp�Lf�
integrated over the region p2 . L

2
f . This changes the

resultant value of Ncr
f to Ncr

f � 6.5. A detailed analysis
will be shown in the forthcoming paper [23].

Axial vector mesons such as a1 are heavier than the
cutoff scale, L�Nf � 3� � 1.1 GeV, so that we did not
include them here. On the other hand, the recent analyses
[25] show that there exist light scalar mesons. Since the
phase transition is expected to be the conformal phase
transition, those masses as well as the baryon masses will
be small anyway [26] when Nf approaches to Ncr

f . Thus
the critical flavor obtained in this paper Ncr

f � 7.6 might
be changed by including those effects.

Although we can study the phase transition only
from the broken phase in this framework, it would be
interesting to see whether the HLS still makes sense even
in the conformal window.

Our result may be applied to the dynamical electroweak
symmetry breaking such as technicolor. As we discussed
above, the r (technirho) mass near the critical point
becomes much smaller than Fp �0; Nf� which is fixed to
be the weak scale. Thus we expect the light technirho as
a signal in the future collider experiments.
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